Читаем Новый ум короля: О компьютерах, мышлении и законах физики полностью

Рис. 6.10.б) график комплексной функции V действительной переменной х

Назовем эту кривую ψ — кривой рассматриваемой частицы. Если бы мы поместили в некоторой точке х детектор, то вероятность обнаружить частицу в данной точке можно найти, вычислив квадрат модуля амплитуды ψ( х), т. е.

| ψ( x)| 2

равный квадрату расстояния ψ-кривой от оси x [143].

Чтобы изобразить подобным образом волновую функцию, определенную на всем трехмерном физическом пространстве, понадобилось бы пять измерений: три — для физического пространства и два — для плоскости Аргана в каждой точке, в которой мы строим график функции ψ( х). Однако наша упрощенная картина еще нам пригодится. Если мы захотим изучить поведение волновой функции вдоль произвольного направления в физическом пространстве, то для этого необходимо просто выбрать ось х вдоль этой линии, а два других пространственных измерения временно использовать в качестве действительной и мнимой осей на плоскости Аргана. Этот способ поможет нашему осмыслению эксперимента с двумя щелями.

Как я упоминал выше, в классической физике для того, чтобы определить, что будет происходить дальше, необходимо знать скорость (или импульс) частицы. В квантовой механике нам представляется значительная экономия. Волновая функция ψ уже содержит различные амплитуды для различных возможных импульсов! (Кое-кто из недовольных читателей может возразить, что «самое время» говорить об экономии, если принять во внимание, как сильно нам пришлось усложнить простую классическую картину точечной частицы. Хотя я во многом согласен с таким читателем, я все же советую не отвергать те лакомые кусочки, которые ему преподносят, ибо худшее еще впереди!) Каким образом амплитуды скоростей определяются волновой функцией ψ? На самом же деле лучше думать в терминах амплитуд импульсов. (Напомним, что импульс, или количество движения, равен скорости, умноженной на массу частицы, см. гл.6 «Уравнение Шредингера; уравнение Дирака») Для этого следует применить к волновой функции ψ так называемый гармонический анализ. Подробно объяснять здесь, что это такое, было бы неуместно, скажу только, что он тесно связан с тем, что происходит с музыкальными звуками. Волну любой формы можно разложить в сумму различных «гармоник» (отсюда и термин «гармонический анализ»), которые представляют собой чистые тона различной высоты (т. е. с различными частотами). В случае волновой функции ψ«чистые тона» соответствуют различным возможным значениям импульса, которые может иметь частица, а величина вклада каждого «чистого тона» в ψ определяет амплитуду соответствующего значения импульса. Сами «чистые тона» называются импульсными состояниями.

Как выглядит импульсное состояние, представленное ψ— функцией? Оно похоже на кривую, напоминающую по форме штопор, официальное математическое название которой — винтовая линия(рис. 6.11) [144].

Рис. 6.11. Импульсное состояние имеет ψ-кривую в форме штопора

Штопоры с частыми витками соответствуют большим импульсам, а штопоры, которые едва вращаются, — очень малым импульсам. Существует предельный случай, когда ψ-кривая вообще не делает витков и вырождается в прямую в случае нулевого импульса. В поведении винтовой линии неявно скрыто знаменитое соотношение Планка. Так как энергия Е всегда пропорциональна частоте v( Е = hv), то частые витки означают короткую длину волны, большую частоту и, следовательно, большой импульс и высокую энергию, а редкие витки означают малую частоту и низкую энергию. Если плоскости Аргана ориентированы обычным способом (т. е. когда оси х, у, z образуют, как описано выше, правую тройку), то импульсы, направленные в положительном направлении оси х, соответствуют правым штопорам (которые обычно и используются).

Иногда квантовые состояния полезно описывать не в терминах обычных волновых функций, как это было сделано выше, а в терминах волновых функций импульсов. Это сводится к рассмотрению разложения волновой функции ψ по различным импульсным состояниям и построению новой функции ψ′, зависящей на этот раз не от положения х, а от импульса р; значение ψ′( p) при любом р задает величину вклада состояния с импульсом р в ψ-функцию. (Пространство величин р называется импульсным пространством.) Смысл ψ′ состоит в том, что при каждом конкретном выборе р комплексное число ψ′( р) задает амплитуду того, что частица имеет импульс р.

Перейти на страницу:

Все книги серии Синергетика: от прошлого к будущему

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки