Читаем Новый ум короля: О компьютерах, мышлении и законах физики полностью

Нетрудно видеть, что свойства ( 1) и ( 2) непосредственно следуют из приведенных выше правил квантовых вероятностей. Мы можем предположить, что  E- измеритель срабатывает первым. Тогда Р- измеритель обнаруживает частицу, спиновое состояние которой имеет направление, противоположное измеренному E- измерителем, поэтому свойство ( 1) следует немедленно. Чтобы получить свойство ( 2), заметим, что для измеряемых направлений, образующих между собой углы в 120°, если E- измеритель дает ответ ДА, то Р- направление расположено под углом 60° к тому спиновому состоянию, на которое действует Р- измеритель, а если E- измеритель дает ответ НЕТ, то Р- направление образует угол 120° с этим спиновым состоянием. С вероятностью 3/ 4= ( 1/ 2)( 1+ cos60°) измерения согласуются, и с вероятностью 1/ 4= ( 1/ 2)( 1+ cos 120°) они не согласуются. Таким образом, усредненная вероятность для трех настроек Р- измерителя при условии, что E- измеритель дает ответ ДА, составляет ( 1/ 3)( 0+ 3/ 4+ 3/ 4) = 1/ 2 для ответа ДА, даваемого Р- измерителем, и ( 1/ 3)( 1+ 1/ 4+ 1/ 4) = 1/ 2 для ответа НЕТ, даваемого Р- измерителем, т. е. результаты измерений, производимых Е- и Р- измерителями, равновероятно согласуются и не согласуются. Аналогичная ситуация возникает и в том случае, когда E- измеритель дает ответ НЕТ. Это и есть свойство ( 2) (см. Глава 6. «Спин и сфера Римана состояний»).

Замечательно, что свойства ( 1) и ( 2) не согласуются с любой локальной реалистической моделью (т. е. с любой разновидностью устройств рассматриваемого типа)! Предположим, что у нас есть такая модель, E- машину следует приготовить для каждого из возможных измерений А, В или С. Заметам, что если бы ее следовало готовить только дам получения вероятностного ответа, то P- машина(в соответствии со свойством ( 1)) не могла бы достоверно давать результаты измерения, не согласующиеся с результатами измерения E- машины. Действительно, обе машины должны давать свои ответы, определенным образом приготовленные заранее, на каждое из трех возможных измерений. Предположим, например, что эти ответы должны быть ДА, ДА, ДА, соответственно, для настроек А, В, С; тогда правая частица должна быть приготовлена так, чтобы давать ответы НЕТ, НЕТ, НЕТ при соответствующих трех настройках. Если же вместо этого приготовленные ответы левой частицы гласят: ДА, ДА, НЕТ, то ответами правой частицы должны быть НЕТ, НЕТ, ДА Все остальные случаи по существу аналогичны только что приведенным. Попытаемся теперь выяснить, согласуется ли это со свойством ( 2). Наборы ответов ДА, ДА, ДА/ НЕТ, НЕТ, НЕТ не слишком многообещающи, так как дают 9 случаев несоответствия и 0 случаев соответствия при всех возможных парах настроек А/ А', А/ В', А/ С', В/ А' и т. д. А как обстоит дело с наборами ДА, ДА, НЕТ/ НЕТ, НЕТ, ДА и тому подобными ответами? Они дают 5 случаев несоответствия и 4 случая соответствия. (Чтобы убедиться в правильности последнего утверждения, произведем подсчет случаев: Д/ Н, Д/ Н, Д/ Д, Д/ Н, Д/ Н, Д/ Д, Н/ Н, Н/ Н, Н/ Д. Мы видим, что в 5 случаях ответы не согласуются и в 4 случаях согласуются.) Это уже гораздо ближе к тому, что требуется для свойства ( 2), но еще недостаточно хорошо, так как случаев несоответствия ответов должно быть столько же, сколько случаев соответствия! Для любой другой пары наборов возможных ответов, согласующихся со свойством ( 1), мы снова получили бы соотношение 5 к 4(за исключением наборов НЕТ, НЕТ, НЕТ/ ДА, ДА, ДА, дам которых соотношение было бы хуже — снова 9 к 0). Не существует набора приготовленных ответов, который могли бы дать квантово-механические вероятности. Локальные реалистические модели исключаются! [164]

Эксперименты с фотонами: проблема для специальной теории относительности?

Мы должны спросить, существуют ли реальные эксперименты, которые подкрепляют эти удивительные квантовые ожидания? Только что описанный точный эксперимент — гипотетический, он никогда не был осуществлен на самом деле. Но были осуществлены похожие эксперименты, в которых использовалась поляризация пары фотонов, а не спин массивных частиц со спином 1/ 2. Кроме этого различия проведенные эксперименты не отличались в принципе от описанного выше гипотетического эксперимента — за исключением того, что фигурировавшие в них углы были вдвое меньше углов дам частиц со спином 1/ 2(так как спин фотона равен 1, а не 1/ 2). Поляризации пар фотонов были измерены в нескольких различных комбинациях направлений, и результаты оказались в полном соответствии с предсказаниями квантовой теории, и не согласовывались ни с какой локальной реалистической моделью!

Перейти на страницу:

Все книги серии Синергетика: от прошлого к будущему

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки