Читаем Новый ум короля: О компьютерах, мышлении и законах физики полностью

Посмотрим теперь, как все это соотносится с нашим экспериментом. Предположим, что зарегистрирован факт излучения фотона лампой L. Волновая функция фотона расщепляется на зеркале и приходит в точку Р с амплитудой, равной 1/√ 2, поэтому фотоэлемент либо регистрирует фотон, либо не регистрирует его — и то и другое с вероятностью, равной одной второй. Другая часть волновой функции фотона попадает в точку А на лабораторной стене(см. рис. 8.3) и тоже с амплитудой 1/√ 2. Если фотоэлемент Р не регистрирует событие, то фотон следует считать попавшим в лабораторную стену в точке А. Если бы в точке А находился другой фотоэлемент, то он регистрировал бы фотон всякий раз, когда фотоэлемент Р не регистрирует фотон, и не регистрировал бы фотон всякий раз, когда фотоэлемент регистрирует фотон. В этом смысле нет никакой необходимости устанавливать фотоэлемент в точке А. Мы можем определить, что сделал бы фотоэлемент в точке А, будь он там установлен, просто глядя на фотоэлементы в точках L и Р.

Теперь должно стать ясно, как выполняются расчеты в квантовой механике. Зададимся вопросом:

«Если известно, что лампа L сработала, то какова вероятность того, что сработал фотоэлемент Р

Для ответа на этот вопрос учтем, что имеется амплитуда, равная 1/√ 2 для фотона, прошедшего путь LMP, и амплитуда, равная 1/√ 2, для фотона, прошедшего путь LMA. Возведя эти амплитуды в квадрат, получаем соответствующие вероятности, равные 1/ 2 и 1/ 2, попадания фотона в точки Р и А соответственно. Следовательно, на наш вопрос квантовая механика дает ответ, равный

« одной второй».

И действительно, именно такой результат получился бы в случае проведения реального эксперимента.

Мы могли бы с таким же успехом использовать экстравагантную процедуру «с обращенным вспять временем» и получили бы тот же самый результат. Предположим, что мы зафиксировали факт срабатывания фотоэлемента в точке Р. Рассмотрим направленную вспять во времени волновую функцию фотона в предположении, что фотон в конце концов приходит в точку Р. Отслеживая эволюцию процесса назад во времени, мы видим, что фотон движется назад от Р, пока не достигнет зеркала М. В этой точке происходит бифуркация волновой функции и мы имеем амплитуду 1/√ 2 того, что фотон достигнет лампы L, и амплитуда 1/√ 2 того, что фотон претерпит отражение в точке М и придет в другую точку на лабораторной стене, а именно в точку В на рис. 8.3. Возводя соответствующие амплитуды в квадрат, мы снова получаем для обеих вероятностей значения, равные одной второй. Следует, однако, отдавать себе отчет в том, на какие именно вопросы отвечают эти вероятности. А вопросы следующие: «Если известно, что лампа L сработала, то какова вероятность срабатывания фотоэлемента Р?» — тот же самый вопрос, что мы рассматривали до этого; и более экстравагантный вопрос: «Какова вероятность срабатывания фотоэлемента Р при условии, что известен факт испускания фотона из стены в точке В

Мы можем рассматривать оба ответа как экспериментально «правильные» в определенном смысле, хотя второй ответ (испускание фотона из стены) скорее представляет собой логическое умозаключение, а не результат реально выполненного ряда экспериментов! Однако ни один из этих вопросов не является обращением во времени того, что был задан выше. Обращенный вспять во времени вопрос звучал бы так:

«Если известно, что фотоэлемент Р сработал, то какова вероятность того, что сработала лампа L

Отметим, что правильный экспериментальный ответ на этот вопрос — это никакая не « одна вторая», а

« единица».

В случае срабатывания фотоэлемента нет практически никаких сомнений в том, что фотон пришел от лампы, а не от лабораторной стены! На наш обращенный во времени вопрос проведенный в рамках квантовой механики расчет дал нам абсолютно неверный ответ!

Отсюда следует, что правила R- части квантовой механики просто-напросто неприменимы к такого рода обращенным во времени задачам. Если мы хотим рассчитать вероятность прошлого состояния исходя из известного состояния в будущем, то применение стандартной R- процедуры, которая заключается в простом возведении в квадрат модуля квантово-механической амплитуды, приводит к неверным результатам. Эта процедура пригодна только для расчета вероятностей будущих событий исходя из прошлых событий — и в этом случае она работает великолепно! Поэтому я считаю совершенно очевидным, что R- процедура не может быть симметрична во времени(и, между прочим, вследствие этого не выводима из симметричной во времени процедуры U).

Перейти на страницу:

Все книги серии Синергетика: от прошлого к будущему

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки