Некоторые стрелки перейдут из области
A в область
B. Такое происходит при возникновении черной дыры в результате гравитационного коллапса вещества. А пересекают ли какие-нибудь стрелки границу между областями в обратном направлении из
B в
A? Такие стрелки действительно есть, но только при условии учета
хокинговского испарения, о котором упоминалось ранее. В строгой
классической общей теории относительности черные дыры способны только поглощать и не в состоянии ничего испускать. Но Хокингу [1975] удалось показать путем учета эффектов квантовой механики, что черные дыры все же способны — на квантовом уровне — кое-что испускать в процессе
хокинговского излучения. (Это происходит в рамках квантового процесса «рождения виртуальных пар», при котором частицы и античастицы постоянно создаются из вакуума — как правило, лишь на мгновение, чтобы тут же аннигилировать, исчезнув без следа. Если есть черная дыра, она может «проглотить» одну из частиц такой пары до того, как произойдет аннигиляция, и вторая частица может покинуть черную дыру. Хокинговское излучение как раз и состоит из этих убежавших частиц.) При обычных обстоятельствах хокинговское излучение чрезвычайно слабое. Но в состоянии теплового равновесия величина энергии, теряемой черной дырой в результате хокинговского излучения, в точности компенсируется энергией, получаемой черной дырой в результате поглощения других «тепловых частиц» из окружающей «тепловой ванны», в которой дыра находится. В результате «флуктуаций» иногда может возникать небольшой избыток излучения или недостаток поглощения, что приводит к потере энергии черной дырой. Теряя энергию, черная дыра теряет также и массу (согласно формуле Эйнштейна
Е=
mc2) и, согласно законам, управляющим хокинговским излучением, становится чуть-чуть горячее. В очень редких случаях, если флуктуация оказывается достаточно большой, черная дыра может даже пойти в разнос, постоянно разогреваясь, теряя все больше энергии в этом процессе, непрерывно уменьшаясь в размерах, пока наконец (как мы предполагаем) совершенно не исчезнет в результате бурного взрыва! Когда это случится (и если считать, что других дыр в ящике нет), мы оказываемся в ситуации перехода из области
B в область
A фазового пространства
Р, и значит действительно есть стрелки, идущие из области
B в область
A!Я хотел бы сделать замечание о смысле, который я вкладываю здесь в понятие «флуктуация». Вспомним ячейки грубого разбиения, рассмотренные в предыдущей главе. Точки фазового пространства, принадлежащие одной ячейке, считаются (макроскопически) «неотличимыми» друг от друга. Энтропия возрастает, потому что, следуя вдоль стрелок, с течением времени мы, как правило, переходим ко все более крупным ячейкам. В конечном итоге точка фазового пространства оказывается затерянной внутри самой большой ячейки — а именно той, что соответствует тепловому равновесию (максимальной энтропии). Однако, это будет справедливо только до определенной степени. Если подождать достаточно долго, то точка фазового пространства окажется
в какой-то момент в ячейке меньших размеров, и энтропия, соответственно, уменьшится. Как правило, это состояние продлится (сравнительно) недолго и энтропия вскоре снова увеличится при возвращении точки фазового пространства в самую крупную ячейку. Это —
флуктуация, сопровождаемая мимолетным понижением энтропии. Обычно значительного падения энтропии не происходит, но в очень редких случаях возникает
огромная флуктуация и энтропия может уменьшиться существенно и остаться малой на протяжении значительного времени.Как раз такого рода событие и должно произойти, чтобы произошел переход из области
B в область
A через процесс хокинговского испарения. Очень большая флуктуация нужна потому, что маленькую ячейку необходимо протащить через то самое место, где стрелки пересекают границу между областями
B и
A Точно также, если наша точка фазового пространства находится внутри большой ячейки в области
A(представляющей совокупность состояний теплового равновесия без черных дыр), пройдет еще очень много времени, прежде чем произойдет гравитационный коллапс и точка перейдет внутрь области
B. И снова нужна большая флуктуация. (Тепловое излучения неохотно идет на гравитационный коллапс!)