Мы подошли теперь к анализу, этой искуснейшей и тончайшим образом разветвлённой отрасли математических наук. Вы сами знаете, какую ведущую роль играет там бесконечное; математический анализ можно в известном смысле назвать единой симфонией бесконечного.
Громадные успехи, достигнутые в исчислении бесконечно малых, основываются большей частью на действиях с математическими системами, состоящими из бесконечного числа элементов. Так как очень легко напрашивалось отождествление бесконечного с «очень большим», то вскоре возникли несогласованности, так называемые парадоксы исчисления бесконечно малых, часть которых была уже в древности известна софистам. Основным шагом вперёд явилось обнаружение того факта, что многие положения, справедливые для конечного, — часть меньше целого, существование минимума и максимума, перемена мест слагаемых или сомножителей — не могут быть непосредственно перенесены на бесконечное. В начале своего доклада я уже упоминал, что эти вопросы были выяснены благодаря проницательности Вейерштрасса, и теперь анализ в своей области стал безошибочным наставлением и практическим инструментом для пользования бесконечным.
Однако сам анализ ещё не ведёт нас к глубочайшему проникновению в сущность бесконечного. Такому проникновению гораздо больше способствует дисциплина, которая стоит ближе к общефилософским приёмам мышления и которая была призвана опять, уже в новом свете, поставить весь комплекс вопросов, касающихся бесконечного. Этой дисциплиной является теория множеств, создателем которой был Георг Кантор. Здесь мы рассмотрим только то, поистине единственное в своём роде и оригинальное, что составляет собственно ядро канторовского учения, — его
Если хотят кратко характеризовать новое понимание бесконечного, которому положил начало Кантор, можно, пожалуй, сказать следующее: в анализе мы имеем дело с бесконечно малым и бесконечно большим только как с предельным понятием, как с чем-то становящимся, образующимся, производящимся, т.е., как говорят, с
Уже Фреге и Дедекинд, сделавшие очень многое для обоснования математики, оба, независимо друг от друга, применили актуальную бесконечность для того, чтобы обосновать арифметику независимо от всякого наглядного представления и опыта, на чистой логике и развивать её дедуктивным путём только посредством логики. Их стремление состояло в том, чтобы конечное число не брать из наглядного представления, а вывести чисто логически, существенно используя при этом понятие бесконечных множеств. Кантор же разработал понятие бесконечного систематически. Рассмотрим оба упомянутых примера бесконечного:
1) 1, 2, 3, 4, ...
2) Точки отрезка [0, 1] или, что то же, совокупность действительных чисел, заключённую между 0 и 1 [включая их].
Во-первых, их надо исследовать с точки зрения многочисленности; при этом мы приходим к поразительным фактам, которые теперь хорошо известны каждому математику. Именно, если рассматривать множество всех рациональных чисел, т. е. все дроби 1/2, 1/3, 2/3, 1/4, ... , 3/7, ... , то оказывается, что это множество, взятое только с точки зрения многочисленности, не больше множества целых чисел; мы говорим, что рациональные числа могут быть обычным способом пересчитаны, или что их множество счётно.