Случай, управляющий этими преобразованиями, есть случай внутренний. Таким образом, атом радиоактивного вещества есть мир, и мир, подчиненный случаю. Но нужно помнить, что говорящий о случае говорит о больших числах; мир, образованный из малого количества элементов, будет подчиняться более или менее сложным законам, но эти законы не будут статистическими законами. Следовательно, атом должен быть сложным миром; верно то, что этот мир замкнутый (или по крайней мере почти замкнутый), он защищен от внешних возмущений, которые мы можем произвести. Так как существует внутренняя атомная статистика и, следовательно, термодинамика, то мы можем говорить о внутренней температуре атома. И что же! Она не имеет никакой тенденции прийти в равновесие с внешней температурой, как будто бы атом полностью закрыт абсолютно нетеплопроводной оболочкой. И именно потому, что он замкнут, потому, что его функции, ясно очерченные, охраняются строгими таможнями, атом и оказывается индивидуумом.
На первый взгляд эта сложность атома не представляет ничего поразительного для ума; казалось бы, что она не должна вызывать никакого смущения. Однако небольшое размышление не замедлит показать нам те трудности, которые мы обошли. Когда мы считали атомы, мы считали степени свободы; мы неявно предположили, что каждый атом имеет их только три; это мы вывели из рассмотрения теплоемкостей. Но каждое новое усложнение должно вводить новую степень свободы, и тогда мы сильно отстаем в счете. Это затруднение не ускользнуло от создателей теории равномерного распределения энергии; их уже удивляло число линий в спектре, но, не находя никакого выхода, они взяли на себя смелость пойти дальше.
Естественным объяснением является представление атома как сложного мира, но мира замкнутого; внешние возмущения вовсе не отражаются на том, что происходит внутри атома, а то, что происходит внутри, вовсе не влияет на то, что происходит снаружи. Но это не будет вполне правильно, в таком случае мы навсегда игнорируем все то, что происходит внутри атома, и атом должен был бы нам представляться как простая материальная точка. Правильнее будет считать, что можно заглянуть внутрь атома, но только через маленькое окошко, что практически не существует обмена энергией между наружным и внутренним миром, а следовательно, и тенденции к равномерному распределению энергии между обоими мирами. Внутренняя температура, как я только что указывал, не стремится к равновесию с внешней температурой, поэтому-то теплоемкость является такой, какой бы она была, если бы этой внутренней сложности вовсе и не существовало. Представим себе сложное тело в виде полой сферы, стенки которой изнутри совершенно непроницаемы для тепла, и внутри нее массу разнообразных тел; наблюдаемая теплоемкость этого сложного тела будет теплоемкостью сферы, независимой от всех заключенных в нее тел.
Дверь, запирающая внутренний мир атома, однако, время от времени приотворяется; это происходит, когда, испуская частицу гелия, атом разрушается и спускается на один ранг в иерархии радиоактивности. Что же тогда происходит? Чем отличается это разложение от обычного химического разложения? Почему атом урана, образованный из гелия и других вещей, имеет больше прав на имя атома, чем, например, полумолекула циана, которая в столь многих отношениях похожа на простое тело, состоящее из углерода и азота? Без сомнения потому, что атомная теплоемкость урана (я не знаю, измерена ли она) подчиняется закону Дюлонга и Пти и потому, что эта теплоемкость — именно теплоемкость простого атома; тогда она должна удваиваться в момент испускания гелия, когда первоначальный атом разбивается на два вторичных. Вследствие этого разложения атом приобретает новые степени свободы, способные действовать на внешний мир, и эти новые степени свободы выразятся в увеличении теплоемкости. Каково же будет следствие этой разницы между общей теплоемкостью составляющих и теплоемкостью соединения? Тепло, освобожденное при этом разложении, должно будет быстро изменяться с температурой, так что образование радиоактивных молекул, существенно эндотермическое при обычных температурах, становится экзотермическим при высоких температурах. Таким образом, до некоторой степени мы можем объяснить радиоактивные образования, которые все же остаются несколько таинственными.
Как бы то ни было, но это представление о маленьких замкнутых или только немного приоткрытых мирах недостаточно для полного решения вопроса. Необходимо, чтобы закон равномерного распределения энергии неограниченно царил вне этих замкнутых миров, за исключением тех случаев, когда одна из дверей приотворяется, но в действительности этого не происходит.
Теплоемкость твердых тел с понижением температуры быстро уменьшается. Дело происходит так, как если бы некоторые из их степеней свободы постепенно отмирали, так сказать, замерзали или, если вам больше нравится, как если бы они теряли всякое соприкосновение с внешним миром и в свою очередь прятались, уж я не знаю, за какую-то оболочку в неизвестный мне замкнутый мир.