Один из самых тяжелых недугов, который может постигнуть человека, — это потеря зрения. В многочисленных легендах и сказках человек выразил свою мечту: научиться побеждать слепоту. В сказке Лермонтова «Ашик-Кериб» могущественный волшебник, дав Ашику кусок земли, говорит: «Если не станут верить истине слов твоих, то вели к себе привести слепую, которая семь лет уж в этом положении, помажь ей глаза — и она увидит». Это должно было явиться таким чудом, которое доказало бы всемогущество волшебника и истинность слов Ашика.
Советская медицина сумела осуществить вековую мечту. Возвращение зрения в наши дни — случай далеко не редкий. Наши врачи произвели не одну тысячу таких операций. Однако иногда врачи бывают бессильны.
То, что летучая мышь прекрасно ориентируется в пространстве с помощью ультразвука, навело ученых на мысль: почему бы и человеку, потерявшему зрение, не дать возможность таким же образом обнаруживать препятствия на своем пути, ходить по улицам города, не прибегая к посторонней помощи?
В одном из аппаратов, который был построен для того, чтобы дать человеку возможность ориентироваться с помощью ультразвука, излучатель посылал каждую секунду приблизительно десять коротких, не слышимых человеческим ухом сигналов. Спустя несколько мгновений после посылки сигнала аппарат автоматически переключался на прием и в течение некоторого времени слушал, не придет ли эхо-сигнал. Специальное устройство превращало эхо-сигнал в слышимый звук, воспринимаемый человеком.
По силе эхо-сигнала человек определял расстояние до предмета, отразившего его: с уменьшением расстояния сила эхо-сигнала возрастала.
В другом аппарате промежуток времени между посылкой сигнала и включением приемника можно менять по своему желанию, вращая особый регулятор. Если этот промежуток увеличить, то эхо придет до включения приемника и не будет услышано. Плавно изменяя время включения приемника, можно, подражая летучей мыши, сделать так, что приемник будет включаться как раз в тот момент, когда приходит эхо. В этом случае положение ручки регулятора позволит оценить расстояние до препятствия, отразившего посланный сигнал: чем больше запаздывание сигнала, тем дальше находится препятствие.
Опытные образцы приборов позволяют различать предметы, отстоящие на расстоянии в несколько метров. Следует отметить, что ультразвуковые приборы обладают весьма «острым зрением»: они различают даже веревку, натянутую на расстоянии 30 сантиметров.
Эти опыты являются лишь первой попыткой приблизиться к еще далекой цели. Но мы можем с уверенностью сказать, что смелая мысль, настойчивость и целеустремленность ученых преодолеют все трудности и в конце концов такой прибор будет создан.
Конечно, не надо порождать напрасных надежд. Когда подобный прибор будет создан, с его помощью все же нельзя будет ориентироваться на людной городской улице, по которой непрерывным потоком спешат пешеходы, проносятся автомобили, троллейбусы, трамваи…
Каждое мгновение прибор зарегистрирует так много эхо-сигналов, что разобраться в них будет практически невозможно. Однако в квартире или в сельской местности, где движение не столь велико, ультразвуковой локатор сможет принести большое облегчение человеку, лишенному зрения.
Уже в первых опытах с мощным ультразвуковым излучением было обнаружено, что простейшие живые существа быстро гибнут при озвучивании.
Советские ученые Г. Б. Доливо-Добровольский и С. И. Кузнецов установили, что инфузории, живущие почти во всех водоемах, при озвучивании чрезвычайно быстро погибают.
Исследуя озвученную воду под микроскопом, ученые не могли обнаружить в ней ни одной уцелевшей инфузории.
Если присоединить к микроскопу специальный аппарат, делающий 1200 снимков в секунду, можно заснять все этапы разрушения микроорганизмов под влиянием ультразвуковых колебаний.
Опыт показал, что для разрыва отдельной клетки необходимо время, меньшее 1
/1200 доли секунды: на первом кадре можно было видеть неповрежденную клетку, а на следующем она была уже полностью разрушена.Причина гибели простейших организмов под влиянием ультразвука точно не установлена, но все же некоторые предположения сделать можно.
Мы знаем, что ультразвуковая волна состоит из чередующихся сжатий и разряжений. При мощной ультразвуковой волне, распространяющейся в воде, разряжения могут быть настолько значительны, что вода не выдержит возникших напряжений и разорвется. В местах разрыва образуются мельчайшие пузырьки, наполненные парами жидкости и растворенными в ней газами.
Образование таких микроскопических разрывов называют кавитацией. Чем больше мощность ультразвука, тем интенсивнее происходит кавитация. Возникший пузырек существует очень недолго, затем захлопывается и исчезает.
При захлопывании кавитационных пузырьков возникают огромные давления, измеряемые тысячами атмосфер, которые, несомненно, оказывают большое влияние на биологические действия ультразвука.