Как пишет Е. Слупецкий в предисловии к собранию избранных работ Лукасевича: «… проблема, которая интересовала Лукасевича больше всего почти всю жизнь и которую он стремился разрешить, прилагая необычайные усилия и страсть – была проблема детерминизма. Она вдохновила его на совершенно изумительную идею многозначных логик» [Slupecki 1970: vii]. Уже ранние, довольно объемистые, работы Лукасевича посвящены анализу понятий
11. Лукасевич исходит из знаменитой 9-ой главы трактата Аристотеля «Об истолковании», где впервые формулируется фаталистический аргумент (см. ниже раздел 14) и обсуждается проблема логического статуса высказываний о будущих случайных событиях на примере завтрашнего морского сражения. По всем этим вопросам Аристотель предлагает свое решение[45]
. Любопытно, что в начале статьи Лукасевич заявляет по поводу принципа противоречия: «Этого важного принципа, который Аристотель, а за ним многие мыслители считаютКак минимум еще четыре раза Лукасевич ставит свое открытие трехзначной логики на уровень создания неевклидовых геометрий. В курсе лекций «Элементы математической логики» мы находим следующее утверждение: «Отношение многозначных логик к двузначной логике напоминает отношение неевклидовой геометрии к геометрии Евклида» [Lukasiewicz 1929: 69]. А в следующем году, обсуждая философское значение многозначных систем пропозициональной логики, в том числе трехзначную модальную логику, построенную на основе Ł3
, Лукасевич говорит: «Мне кажется, что философское значение систем логики, рассмотренных здесь, может быть, по крайней мере, так же высоко, как значение неевклидовых систем геометрии» [Lukasiewicz 1930/1970: 176][46]. Это было подтверждено в 1937 г. в статье «В защиту логистики»: «… с существованием систем многозначной логики мы должны сегодня считаться в такой же степени, как, например, с существованием систем неевклидовой геометрии» [Лукасевич 1999: 229]). Наконец, это же было провозглашено на международной конференции «Основания и методы математических наук», состоявшейся в Цюрихе в 1938 г.: «Эти различные формы многозначной пропозициональной логики находятся более или менее в том же самом отношении к классическому двузначному пропозициональному исчислению, как различные системы неевклидовой геометрии находятся к евклидовой» (см. [Łukasiewicz 1941/1970: 293])[47].