Именно здесь во время дискуссии[48]
свойства трехзначной логики были подвергнуты серьезной критике. Лукасевичу явно было указано, что принцип противоречия в его логике не работает, поскольку приведенное им конъюнктивное высказывание: «через год я буду в Варшаве и через год я не буду в Варшаве» – в его интерпретации имеет истинностное значение «возможность», хотя совершенно ясно, что такое конъюнктивное утверждение (противоречие) должно быть ложным сейчас. Более того, впоследствии обратили внимание, что хотя Лукасевич впервые ввел строгое различие между принципом бивалентности и принципом исключенного третьего, но в его трехзначной логике не принимается ни то, ни другое, что ведет к неадекватной экспликации аристотелевского решения проблемы логического фатализма. Аристотель явно утверждал, что альтернатива в виде принципа исключенного третьего всегда является истинной. Отметим, что именно в силу этого, Лукасевич и ввел различие между двумя принципами. Обратим также внимание на то, что при стандартном определении “лжи”, восходящем к Аристотелю, а именно: «ложность есть истинность отрицания (противоречивого) высказывания» – указанные принципы становятся эквивалентными (см. [Карпенко 1995]). Но это только в “классических” контекстах, для многих неклассических логик такая эквивалентность не имеет места. Поэтому проведенное Лукасевичем различие является фундаментальным, но в данном случае не работает. Таким образом, предложенное Лукасевичем интуитивно-содержательное толкование трехзначной логики, как аппарата для решения проблемы логического фатализма, нельзя совместить с формально-логическими свойствами этой логики, а на самом деле с ее истинностно-функциональным характером[49].12.
Столкнувшись с возрастающей критикой того факта, что в его логике принцип противоречия отбрасывается (хотя напомним, что именно жесткая критика этого принципа лежит в основе его книги «О принципе противоречия у Аристотеля»), Лукасевич, не возразив ни одному из своих оппонентов[50], как минимум дважды отказывается от своего главного научного достижения[51]. Первый раз в 1953 г. при создании новой модальной четырехзначной логики, которую он назвал «Ł-модальной логикой». Эта логика получается посредством умножения двузначной матрицы классической логики на саму себя. Отсюда все законы классической логикиЕще более резкое отрицание всего предыдущего содержится в последней книге Лукасевича: «Сегодня я вижу, что эта система [трехзначная логика] не удовлетворяет всем нашим интуитивным пониманиям модальностей и должна быть заменена описанной ниже системой.