Чтобы ввести понятие ложностного содержания АF
высказывания a или класса следствий A, можно обратиться к понятию относительного содержания A при данном B, которое можно ввести как обобщение дедуктивной системы в смысле Тарского, или (абсолютного) содержания A=Cn(A).Я попытаюсь разъяснить это понятие, и ввиду возможной интуитивной критики я введу также понятие меры содержания. В конце этой главы я введу с помощью понятия мер истинностного содержания и ложностного содержания понятие степени приближения к истине, или правдоподобности (verisimilitude).VI
Тарский говорит о больших или меньших дедуктивных системах или классах следствий. Действительно, множество дедуктивных систем (для некоторого языка) частично упорядочено отношением включения, совпадающим с отношением выводимости. Следующее замечание, высказанное Тарским в его работе об исчислении систем, можно использовать как ключ к релятивизации классов следствий, или содержаний, или дедуктивных систем: «среди дедуктивных систем существует наименьшая, то есть являющаяся подсистемой всех других дедуктивных систем. Это система Cn(0)
— множество следствий пустого множества. Эта система, которая здесь для краткости будет обозначаться L, может интерпретироваться как множество всех логически верных (valid) предложений (или, в более общем виде, как множество всех тех предложений, которые мы признаем за истинные с самого начала, когда принимаемся строить дедуктивную теорию, являющуюся предметом... нашего исследования)» [310].Это наводит на мысль, что мы можем использовать вместо нулевой системы L
какую-то другую систему «в качестве множества всех тех предложений, которые мы признаем за истинные с самого начала, когда принимаемся строить, и т.д.». Обозначим, как и ранее, дедуктивную систему, содержанием которой мы интересуемся, переменной "A", а «множество всех тех предложений, которые мы признаем за истинные с самого начала», переменной "B". Тогда мы можем написать выражениеCn(А,В)
как релятивизацию (relativization) Cn(А)
Тарского, которое является особым случаем при В= L = Cn(0):Cn(А)=Cn(A,L).
Мы можем писать сокращенно "A,B" вместо "Cn(A,B)", точно так же, как Тарский пишет "A" вместо "Cn(A)".
Процитированный отрывок из Тарского подсказывает следующее определение:Определение: А,В=Cn(А,В)
= Cn (A+B) - Cn(B).А отсюда очевидным образом следует
Теорема:
A=Cn(A)=A,L=Cn(А,L)=Cn(A+L)-Cn(L).
Ограничиваясь относительным способом записи, мы получаем для истинностного содержания
АТ
=AT,L=Cn((А.Т)+L)- Cn(L),а для ложностного содержания
AF
= A, AT= Cn(A+ AT) - Cn(AT) = Cn(A) - Сп(АT),что превращает ложностное содержание в относительное содержание, объем (extension) которого совпадает (как первоначально и предлагалось) с классом всех ложных высказываний в А.
VII
Против предложенного определения ложностного содержания Ар
как относительного содержания А)Ат можно выдвинуть следующее возражение. Это определение интуитивно опирается на цитату из Тарского, в которой Тарский принимает L за наименьшую или нулевую дедуктивную систему. Вместе с тем в нашей последней теоремеА=A,L=Cn(А+L)-Cn(L)
мы воспринимали слово «нулевая» слишком буквально: теперь мы видим, что L
следует понимать как множество меры нуль, а не как множество, которое, с учетом нашего выражения "-Cn(L)", в буквальном смысле пусто или которого больше нет, согласно нашему определению, поскольку оно было вычтено (так что в A остались только нелогические высказывания, чего мы не имели в виду).Относимся мы к этому возражению серьезно или нет, оно в любом случае исчезает, если мы решим оперировать с мерой содержания ct(A)
или ct(A,B),а не с самим содержанием, или классом следствий Cn(А) или Cn(А,В).В 1934 году Тарский привлек внимание пражской конференции к аксиоматизации исчисления относительной вероятности дедуктивной системы А
при данной дедуктивной системе В, предложенной Стефаном Мазуркевичем[311] и опирающейся на исчисление систем Тарского. Такую аксиоматизацию можно рассматривать как введение функции меры для дедуктивных систем или содержаний А, В, С,... , даже хотя данная конкретная функция — функция вероятностир(А,В)
и возрастает с уменьшением относительного содержания. Это наводит на мысль ввести меру содержания с помощью определения, такого как
Определение: ct(A, В) = 1 - p(А, В).
Эта функция возрастает и убывает с возрастанием и убыванием относительного содержания. (Возможны, конечно, и другие определения, но это кажется самым простым и очевидным). Мы сразу же получаем:
ct(L) = 0
ct(AT
) = 1 - p(А.T, L) = 1 - р(А.Т)ct(AF
) = 1- p(A,AT),