Чтобы рассчитать площадь круга, Архимед представлял себе многоугольник с большим количеством сторон, описанный вокруг круга. Для простоты рассмотрим правильный многоугольник, у которого все стороны и углы равны. Площадь такого многоугольника есть сумма площадей всех прямоугольных треугольников, которые образуются, если провести лучи из центра многоугольника к каждой из его вершин и к середине каждой из его сторон (см. рис. 4, здесь для примера в качестве многоугольника взят правильный восьмиугольник). Площадь прямоугольного треугольника равна половине произведения обоих его катетов, поскольку два таких треугольника можно сложить вместе гипотенузами, и тогда они образуют прямоугольник, площадь которого равна произведению катетов исходного треугольника. В нашем случае это означает, что площадь каждого треугольника равна половине произведения отрезка
Сегодня мы знаем число
Рис. 4. Вычисление площади круга.
Чтобы рассчитать площадь круга, используется описанный многоугольник. На этом рисунке у многоугольника восемь сторон, и его площадь уже приблизительно равна площади круга. Чем больше будет сторон у многоугольника, тем точнее его площадь будет совпадать с площадью круга.Те же самые выводы справедливы и если мы будем вписывать многоугольник внутрь круга, а не описывать его снаружи, как на рис. 4. Поскольку окружность всегда находится между вписанным и описанным многоугольником, расчет площадей обоих этих многоугольников позволил Архимеду найти верхние и нижние границы для отношения длины окружности к ее радиусу, то есть для величины 2
11. Размеры Солнца и Луны и расстояния до них
Аристарх использовал четыре наблюдательных факта, чтобы определить расстояния от Земли до Солнца и Луны, а также диаметры Солнца и Луны. Все полученные результаты он выразил в единицах диаметра Земли. Рассмотрим каждое из выполненных им наблюдений по очереди и посмотрим, что можно узнать, основываясь на них. Далее расстояния между Землей и Солнцем и Землей и Луной будут обозначаться соответственно
Наблюдение 1
Когда Луна в фазе первой или последней четверти, угол между направлениями на Луну и на Солнце составляет 87°.
Если в этот момент смотреть с Луны, угол между направлениями на Солнце и на Землю должен составлять точно 90° (см. рис. 5а), поэтому треугольник, образованный отрезками Луна – Солнце, Луна – Земля и Земля – Солнце, является прямоугольным, в котором отрезок Земля – Солнце есть гипотенуза. Отношение катета, прилежащего к углу θ (тета) в прямоугольном треугольнике, к его гипотенузе – тригонометрическая функция косинус угла θ, которая обозначается cos θ, и ее значение мы можем взять из таблицы или рассчитать на калькуляторе с тригонометрическими функциями. Итак,
и значит, из наблюдения следует, что Солнце в 19,11 раз дальше от Земли, чем Луна. Не зная тригонометрии, Аристарх мог лишь заключить, что это число не меньше 19 и не больше 20. На самом деле этот угол равен не 87°, а 89,853°, и поэтому Солнце в действительности находится в 389,77 раз дальше от Земли, чем Луна.