Подкожный слой жира как подводная теплоизоляция хорош всем, кроме одного: кожа находится снаружи от него и, соответственно, остывает. А ведь она должна периодически обновляться, и для этого необходим приток крови, несущей питательные вещества для роста новых клеток. Но если приток крови произойдет в холодной воде, это приведет к значительной потере тепла. Некоторые обитатели холодных вод, например белухи, населяющие арктические моря, решают эту проблему, выбирая для линьки мелководные теплые бухты и эстуарии рек. А антарктические косатки типа «B», охотящиеся на тюленей среди плавучих льдов, поступают еще радикальнее – они совершают регулярные миграции в тропики. Этот удивительный факт обнаружил американский ученый Джон Дурбан с помощью установленных на плавники косаток спутниковых меток, которые регулярно транслировали местоположение животного. Миграции не приурочены к какому-то определенному сезону; просто время от времени косатки покидали ледяные антарктические воды и быстро шли прямиком на север, достигая теплых вод на широте Уругвая и Бразилии. Один трек, длившийся 109 дней, позволил зафиксировать безостановочную миграцию туда-обратно длиной более 9400 километров всего за 42 дня. В теплых водах косатки перемещались медленнее, но не было замечено никаких резких изменений в скорости или направлении движения, которые могли бы указывать на роды, длительную кормежку или другие уважительные причины, ради которых стоило бы идти в такую даль. Единственное объяснение таким миграциям – потребность косаток в линьке. Им необходимо периодически сбрасывать отмирающую старую кожу и наращивать новую, но регенерация требует прилива крови, что ведет к резкому росту теплопотерь. По-видимому, косаткам энергетически выгоднее сплавать в отпуск в тропики, чем линять в антарктических водах при температуре, близкой к нулю.
Кожа дельфинов долгое время привлекала пристальный интерес биомехаников, которые решали важную стратегическую проблему – как добиться, чтобы крейсеры и подводные лодки ходили быстрее. Еще в 1930-х годах англичанин Джеймс Грей измерил скорость плавания дельфинов и посчитал, что для движения с такой скоростью они должны обладать в семь раз большей мышечной силой, чем другие млекопитающие (парадокс Грея). Он предположил, что дельфины умеют управлять обтекаемостью своей кожи, сохраняя ламинарное обтекание при скоростях движения, для которых оно уже должно становиться турбулентным.
Что такое турбулентность? При некоторой небольшой скорости движения слои жидкости перемещаются параллельно друг другу, без завихрений – такое обтекание называется ламинарным. При увеличении скорости в среде самопроизвольно образуются многочисленные завихрения. Они появляются случайно, и их размер и амплитуда меняются хаотически. Турбулентность существенно повышает сопротивление, ограничивая максимальную скорость движения.
Как же дельфины справляются с турбулентностью? Гидродинамик Макс Крамер показал, что сопротивление воды, испытываемое дельфином при движении, в 10 раз меньше, чем сопротивление при движении модели того же размера и формы с обычной обшивкой. Крамер предположил, что кожа дельфинов гасит турбулентные завихрения за счет своей упругости. В ней есть два основных слоя – эластичный наружный (эпидермис) и лежащий под ним упругий внутренний (дерма с высокими сосочками и жировым отложением). По мнению Крамера, наружный слой выгибается и пружинит под давлением воды, что позволяет гасить зарождающиеся завихрения. Ориентируясь на строение кожи дельфина, Крамер разработал искусственное покрытие «ламинфло», которое существенно уменьшало сопротивление потока жидкости.
Большое внимание строению кожи дельфина уделяли и советские ученые, искавшие способы снизить сопротивление воды для увеличения скорости подводных лодок. Советские исследователи предполагали, что способность дельфинов к поддержанию ламинарного обтекания связана прежде всего с постоянной динамичной подстройкой кожи к силе потока. Согласно их гипотезе, каждый сосочек кожи благодаря увеличению или уменьшению просвета кровеносных сосудов на различных скоростях плавания обладает переменной упругостью, которая рефлекторно меняется в зависимости от силы набегающего потока.
Обсуждение парадокса Грея продолжалось и позже, однако до недавнего времени никто не подвергал сомнению главный тезис, лежащий в его основе, – что сила, создаваемая мышцами дельфина, должна быть равна силе сопротивления воды. В 2014 году группа физиков доказала, что это неверно: для объектов, движущихся с помощью волнообразных изгибов тела, сила мышц, толкающих тело вперед, в действительности может быть меньше действующей на него силы сопротивления, и никакого парадокса в этом нет.