Но продолжим нашу небольшую энциклопедию неприятных запахов. Еще один класс зловонных соединений – это амины (см. рис. 3). В отличие от уже рассмотренных запахов, способных в некоторых условиях стать довольно приятными, амины на редкость постоянны в своей отвратительности, где бы и в какой бы концентрации они ни содержались. Для аминов характерен один атом азота, связанный с тремя атомами углерода (третичные амины), двумя атомами углерода и одним – водорода (вторичные амины) или одним углерода и двумя – водорода (первичные амины). Все эти молекулы, размер которых не превышает шести-семи атомов углерода, обладают очень отталкивающим запахом, указывающим, вместе с вышеупомянутыми соединениями серы, что в мясе или овощах начался процесс гниения. Распад белков, а именно двух из составляющих их 20 аминокислот – лизина и аргинина, – приводит к образованию диаминов с весьма красноречивыми названиями «кадаверин» и «путресцин».
Несмотря на столь красочные имена, оба этих соединения почти лишены запаха в чистом виде. Присутствие сразу двух аминогрупп в одной молекуле ведет к высокой гидрофильности и, как следствие, к низкой волатильности (летучести). Проще говоря, эти вещества предпочитают пребывать в воде, а не в воздухе. Настоящие химические вестники распада – это два циклических соединения, 1-пирролин (см. рис. 3) и тетрагидропиридин, получаемые соответственно из путресцина и кадаверина путем удаления молекулы аммиака. Хотя эти циклические соединения производятся в очень малых количествах, их запах очень силен, а подаваемый им сигнал – внятен, даже когда процесс разложения еще только начался.
Еще один представитель этого класса, триметиламин, предупреждает нас, что рыба уже не свежа. Он начинает вырабатываться вскоре после того, как рыба умирает, – из оксида, низколетучего (и, следовательно, лишенного запаха) вещества, которым морская рыба пользуется для компенсации осмотического давления.
Тем не менее гадкий запах этих аминов исправно помогает нам оценивать качество мяса и рыбы в холодильнике. Мы инстинктивно тычемся в них носом, чтобы решить, годятся ли они еще в готовку или уже нет. Впрочем, бывает и так, что пахнут продукты уже не очень, но мы все равно решаем, что есть их безопасно. На самом деле запах – очень ранний сигнал, способный испортить вкус блюда, даже еще не став совсем уж невыносимым. О привычке добавлять кислые ингредиенты – лимон, уксус, вино – мы уже говорили. Они не только меняют вкус блюда, но и нейтрализуют те самые микроскопические количества аминов, триметиламина и путресцина, превращая эти соединения в нелетучие (и, следовательно, лишенные запаха) соли.
Еще один пример запаха, обычно предупреждающего об опасности, но в иных обстоятельствах кажущегося даже приятным, – геосмин. Это соединение с довольно сложной молекулярной структурой (см. рис. 3); его производят обитающие в земле микроорганизмы актиномицеты (
Несмотря на свой приятный запах, геосмин может сигнализировать о микробном заражении; к примеру, в питьевой воде его присутствие, мягко говоря, нежелательно. В почве он нередко проникает в глубокие слои и оттуда может попасть в водопровод. Если воду не обрабатывать правильно, она может стать опасной.
Как будто всего вышесказанного еще недостаточно, на восприятие пахучих веществ непосредственно влияет их концентрация. Запахи, приятные в низкой концентрации, часто становятся отвратительными в высокой. Это хорошо известный эффект – именно он объясняет, почему относительные концентрации компонентов сложного букета (например, у хорошего вина) так важны для его общего качества. Нечто подобное происходит и с визуальными, или акустическими, стимулами: интенсивность сигнала и относительная сила компонентов составного произведения решающим образом влияют на восприятие и на эмоции, которые оно вызывает у зрителя или слушателя. Представьте себе идеально сбалансированное звучание инструментов в оркестре… и как легко уничтожить это приятное впечатление, если какой-то один из них вдруг решит заиграть громче всех прочих! Один и тот же свет способен влиять на наше настроение совершенно противоположным образом в зависимости от интенсивности. Сказанное верно и для других факторов окружающей среды.