Вернемся к обонянию. Еще одна молекула, пахнущая опасностью, – 2,4-нонадиеналь (см. рис. 3) – может содержаться в еде в разных концентрациях и вызывать совершенно разные эмоциональные реакции. Вместе с другими соединениями аналогичной структуры эта молекула образуется при деградации жиров. Мы уже говорили, что большинство жиров, как растительного, так и животного происхождения, содержат триглицериды – крупные и, соответственно, лишенные запаха молекулы. Когда в молекулах триглицеридов рвутся цепочки длинных жирных кислот, привязанные к глицеролу, образуются более мелкие молекулы на восемь-десять атомов углерода, в том числе 2,4-нонадиеналь. Они достаточно летучи, чтобы добраться до носа и передать предупреждение. Этот процесс возможен не только в продуктах, обычно относимых к жирам (сливочное и растительное масло, животное сало), но и в любой другой пище, где есть хоть немного жиров: в мясе, орехах, кофе, шоколаде, выпечке и др.
В молоке и молочных продуктах триглицериды могут распадаться до изначального глицерола и коротких жирных кислот с их типичным потливо-сырным, подчас довольно сомнительным запахом. Однако жирные кислоты с более длинной цепочкой тоже состоят из триглицеридов: в растительных маслах присутствуют только длинные жирные кислоты, от 16 до 18 атомов углерода. Оливковое масло, например, состоит из триглицеридов, в молекулах которых содержится всего несколько жирных кислот, и 75–80 % из них приходится на олеиновую (18 атомов углерода с двойной связью в середине). Молекулы с такой длинной цепочкой не слишком летучи и пахнут очень слабо.
Итак, о том, что в продукте начались реакции распада, нас предупреждает запах гнилостных соединений, таких как 2,4-нонадиеналь и ему подобные. Эти химические вещества возникают в результате целого ряда различных реакций, начиная с окисления атома углерода рядом с двойной связью под воздействием свободных радикалов и заканчивая распадом химических связей вокруг центра молекулы. Иными словами, если жирная кислота содержит 18 атомов углерода и двойная связь располагается посередине, как в случае олеиновой кислоты, продуктами ее распада будут альдегиды по восемь, девять или десять атомов углерода. Из-за своего относительно малого размера и свойств альдегидной группы, неохотно вступающей в контакт с водой (гидрофобия), эти соединения куда более летучи, чем их родители – длинные жирные кислоты. Все они пахнут похоже: типичную прогорклую ноту можно почуять и в бутылке растительного масла, которую на несколько дней оставили незакрытой, и в куске забытого в холодильнике сливочного масла, и в пакетике застоялого арахиса.
Поразительно, но альдегиды на девять атомов углерода, сходные по структуре и запаху с этими малоприятными соединениями, встречаются (хотя и в очень низких концентрациях) в овощах, в частности в огурцах, и, как ни странно, в арбузе. При таком низком содержании (несколько частиц на миллиард) острый, неприятный прогорклый запах исчезает, оставляя взамен только свежие и зеленые ноты.
Но каким образом одно и то же соединение может играть настолько разные роли? Психология наверняка могла бы предложить очень пространное объяснение. Тот факт, регистрируется ли обонятельное ощущение как приятное или неприятное, во многом зависит от того, как мозг обрабатывает сенсорные импульсы, какие воспоминания – хорошие или плохие – у нас ассоциируются с данным конкретным запахом и какой смысл мы вкладываем в ольфакторный опыт. Мы уже убедились, что один и тот же запах в зависимости от контекста может читаться как привлекательный или отталкивающий – точно так же, как одно и то же слово в разных предложениях может означать разные вещи. Изовалериановая кислота отвратительна в поте немытого человека, но может оказаться чарующей в зрелом сыре.
Однако мы еще не до конца объяснили, почему запахи меняются в зависимости от концентрации. Есть и другие факторы, относящиеся к «харду» нашей обонятельной системы – к ее физиологической и биохимической части. Давайте попробуем представить себе встречу молекулы пахучего вещества с ее специфическим ольфакторным рецептором. Сразу же оговорим, что одно соединение может распознаваться более чем одним рецептором; каждый из распознавших его рецепторов выдаст сигнал, и все они будут разной интенсивности. Если вспомнить метафору с ключами и замками, сформулировать можно так: один ключ подходит ко многим замкам, но открывать их будет с разной эффективностью.
Представьте, что вам дали ключ и попросили открыть им как можно больше замков, которые, в свою очередь, бывают нескольких разных типов. К концу эксперимента окажется, что большинство открытых замков относятся к тому типу, в который ключ легко входит и проворачивается без усилий. Будут и другие – к которым ключ тоже подходит, но требует нескольких попыток и приложения значительных усилий.