На 65-километровой высоте атмосфера слишком разрежена, чтобы там могла пройти взрывная волна, а вот возникновение ударной волны очень даже вероятно. Следственная группа, в основном путем исключений, пришла к выводу, что именно это и убило астронавтов. Кларк пояснил, что, если разрушение проходит на скорости, превышающей 5 Махов (то есть в пять раз выше скорости звука, что составляет около 5500 км/ч), в игру вступает пока слабоизученный феномен ударной волны под названием перекрестный удар. Он наступает, когда части разваливающегося при возвращении в атмосферу корабля начинают непредсказуемым образом двигаться со сверхзвуковой скоростью и создавать сеть ударных волн. Кларк сравнил их с волнами, возникающими в результате движения катера для водных лыж. В точках пересечения этих волн силы каждой из них удваиваются, приобретая дикую, сверхъестественную мощь.
«По сути, эти волны просто разорвали корабль на кусочки, – говорил Кларк, – но не целиком. Мы находили и абсолютно целые предметы». Он рассказал об исследователе, который осматривал обломки корабля в Техасе и нашел тонометр, прибор для измерения внутриглазного давления, и тот оказался исправным.
Ветер снаружи палатки усиливался, скрип ветряка становился просто невыносимым. Весь вечер был какой-то необычный. Мы сидели плечом к плечу, уставившись в ноутбук Кларка. Он говорил, а я слушала. И тут я неожиданно прервала его рассказ вопросом, далеко не единственным из тех, что мне все это время хотелось ему задать. Мне хотелось спросить, как он справлялся со всем этим, узнавая новые и новые детали смерти своей жены. Почему он вообще решил присоединиться к следственной группе? Но было бы нетактичным с моей стороны задавать подобные вопросы. Поэтому я решила для себя, что причины были теми же, что побудили его принять участие и в программе «Стратос»: ему просто хочется знать как можно больше о том, что может произойти с человеческим телом, когда транспортное средство, в котором оно движется, разваливается на части, находясь при этом на большой высоте; а полученные знания он хочет применить для создания технологий, которые помогут защитить эти самые человеческие тела, спасти жизни астронавтам и космическим туристам и сохранить их семьи.
Но все это очень сложная задача. Любая система аварийного покидания корабля рассчитана на определенную скорость и высоту. Катапультирующие кресла, к примеру, сработают лишь на первых 8-10 секундах после запуска корабля или самолета, то есть пока сила динамического давления – результат взаимодействия плотности воздуха и создающей скорость силы ветра – не достигнет смертельного для человека уровня. Система катапультирования должна быстро выбросить астронавта на достаточное от корабля расстояние, чтобы не допустить удара о какую-нибудь его выступающую часть или избежать опасности быть затянутым в огненный шар, возникающий в момент взрыва ракеты. Новейшие аварийные системы покидания космического корабля предусматривают использование длинной штанги, к которой астронавты могут прицепиться крюком, выбираясь наружу, чтобы выскользнуть, не ударившись о крыло шаттла. Вышедший на пенсию инженер и историк космонавтики Терри Сандей отмечает, однако, что это сработает только в том случае, если шаттл будет лететь спокойно и ровно. «А в таком случае крюки и вовсе не нужны», – заключает он.
И все же выжить в условиях колоссальной скорости и высокой температуры по-прежнему очень сложно. Российское космическое агентство провело недавно испытание прототипа системы спасение экипажа путем торможения надувным баллоном и парашютом (ее называют ballute – от balloon и parachute). Теплозащитный экран на передней поверхности устройства защищает терпящего бедствие астронавта и своей широкой поверхностью тормозит его до такой скорости, чтобы в действие могла вступить многоступенчатая парашютная система, позволяющая совершить безопасное приземление. Но никто не испытывал это приспособление в реальной ситуации – при прыжке прямо из космоса. Подобным же образом на парашютах можно опустить на землю и всю капсулу или какую-то ее часть. (Сегодня в качестве аварийной спасательной капсулы для МКС НАСА планирует использовать «Орион»). Но парашюты достаточно тяжелые, а значит, и их использование обойдется недешево для запуска ракеты, а в случае с космическими капсулами процесс отделения отсека с экипажем от остальной части корабля может сопровождаться серьезными техническими осложнениями. Кроме того, парашюту понадобится его собственная теплоизоляция, чтобы предотвратить плавление при входе в атмосферу, что опять же доставит некоторые трудности.
Ну а что насчет пассажиров самолетов? Можно ли в случае необходимости выпрыгнуть из истребителя с парашютом за плечами и остаться живым? Если не принимать в расчет вопросы перевеса и стоимости, почему авиалайнеры не снабжены переносными кислородными баллонами и сложенными под сидениями парашютами? Причин тому много. Пожалуй, настало самое время поговорить о воздушных потоках и гипоксии.