Из полученного раствора может быть выделена соль двухромовой кислоты — дихромат калия ^^^ — в виде оранжево-красных кристаллов. Реакция превращения хромата в дихромат выражается уравнением:
Реакция обратима. Это значит, что при растворении дихромата в воде всегда образуется некоторое, хотя и незначительное, количество ионов ^^^ и ^^^ поэтому раствор дихромата имеет кислую реакцию. Если к раствору дихромата прибавлять щелочь, то гидроксид-ионы будут связывать находящиеся в растворе ионы водорода, равновесие смещается влево и в результате дихромат превращается в хромат. Таким образом, в присутствии избытка гидроксид-ионов в растворе практически существуют только ионы ^^^ , т. е. хромат, а при избытке ионов водорода — ионы ^^^ , т. е. дихромат.
Хроматы щелочных металлов получаются путем окисления соединений ^^^ в присутствии щелочи. Так, при действии брома на раствор хромита калия образуется хромат калия:
О происходящем окислении можно судить по тому, что изумрудно-зеленая окраска раствора хромита переходит в ярко-желтую.
Хроматы могут быть получены также сплавлением ^^^ со щелочью в присутствии какого-нибудь окислителя, например хлората калия:
Хроматы и дихроматы — сильные окислители. Поэтому ими широко пользуются для окисления различных веществ. Окисление производится в кислом растворе и обычно сопровождается резким изменением окраски (дихроматы окрашены в оранжевый цвет, ^^^ соли ^^^ зеленый или зеленовато-фиолетовый).
Мы видели, что в кислых и в щелочных растворах соединения ^^^ и ^^^ существуют в разных формах: в кислой среде в виде ионов ^^^ или ^^^ , а в щелочной — в виде ионов ^^^ или ^^^ Поэтому взаимопревращение соединений хрома (III) и ^^^ протекает по-разному в зависимости от реакции раствора. В кислой среде устанавливается равновесие
а в щелочной
Однако и в кислой, и в щелочной среде окисление ^^^ приводит к уменьшению ^^^ раствора; обратный же процесс — восстановление хрома ^^^ - сопровождается увеличением ^^^ .
Поэтому, в соответствии с принципом Ле Шателье, при повышении кислотности среды равновесие смещается в направлении восстановления хрома (VI), а при уменьшении кислотности — в направлении окисления хрома (III). Иначе говоря, окислительные свойства соединений хрома (VI) наиболее сильно выражены в кислой среде, а восстановительные свойства соединений хрома ^^^ щелочной. Именно поэтому, как указывалось выше, окисление хромитов в хроматы осуществляют в присутствии щелочи, а соединения хрома (VI) применяют в качестве окислителей в кислых растворах.
Приведем несколько примеров окислительно-восстановительных реакций, протекающих при участии дихроматов.
1. При пропускании сероводорода через подкисленный серной кислотой раствор дихромата оранжевая окраска раствора переходит в зеленую и одновременно жидкость становится мутной вследствие выделения серы:
2. При действии концентрированной соляной кислоты на дихромат калия выделяется хлор и получается зеленый раствор, содержащий хлорид хрома (III):
3. Если пропускать диоксид серы через концентрированный раствор дихромата калия, содержащий достаточное количество серной кислоты, то образуются эквимолекулярные количества сульфатов калия и хрома (III):
При выпаривании раствора из него выделяются хромокалиевые квасцы ^^^ . Этой реакцией пользуются для получения хромокалиевых квасцов в промышленности.
Наиболее важными из дихроматов являются дихромат калия ^^^ и дихромат натрия ^^^ , образующие оранжево-красные кристаллы. Обе соли, известные также под названием хромпиков, широко применяются в качестве окислителей при производстве многих органических соединений, в кожевенной промышленности при дублении ^^^ , в спичечной и текстильной промышленности. Смесь концентрированной серной кислоты с водным раствором дихромата калия или натрия под названием «хромовой смеси» часто применяется для энергичного окисления и для очистки химической посуды.
Все соли хромовых кислот ядовиты.
Триоксид хрома, или хромовый ангидрид, ^^^ выпадает в виде темно-красных игольчатых кристаллов при действии концентрированной серной кислоты на насыщенный раствор дихромата калия или натрия:
Хромовый ангидрид принадлежит к числу наиболее сильных окислителей. Например, этиловый спирт при соприкосновении с ним воспламеняется. Производя окисление, хромовый ангидрид превращается в оксид хрома (III) ^^^ .
Хромовый ангидрид легко растворяется в воде с образованием хромовой и двухромовой кислот.
229. Молибден (Mollbdenium).
Главным природным соединением молибдена является молибденит, или молибденовый блеск, ^^^ — минерал, очень похожий по внешнему виду на графит и долгое время считавшийся таковым. В 1778 г. Шееле, показал, что при обработке молибденового блеска азотной кислотой получается белый остаток, обладающий свойствами кислоты. Шееле назвал его молибденовой кислотой и сделал заключение, что сам минерал представляет собой сульфид нового элемента. Пять лет спустя этот элемент был получен в свободном состоянии путем прокаливания молибденовой кислоты с древесным углем.