Время, оставшееся до исполнения опциона, влияет на цену акции похожим образом. Действительно, чем больше времени до исполнения, тем больше вероятность того, что цена поднимется, и тем больше вероятность получить большую прибыль при исполнении опциона. Учитывая, что наши убытки при падении цены на акцию ограничены, становится очевидным, что с приближением к времени исполнения цена опциона уменьшается. С уменьшением времени уменьшается также и дисконтирующий множитель, приводящий будущую прибыль к сегодняшнему значению. Это увеличивает стоимость опциона, однако в меньшей степени.
С увеличением цены акции увеличиваются ваши ожидания того, что в момент окончания действия опциона его исполнение принесет прибыль. Следовательно, с увеличением цены актива цена опциона колл возрастает.
С увеличением безрисковой ставки увеличиваются ваши ожидания относительно будущей цены базового актива, следовательно, с увеличением процентной ставки цена опциона колл увеличивается.
3. Влияние на модель фактора дивидендов
Теперь перейдем к вычислению цены европейского опциона колл для акции, по которой выплачиваются дивиденды. После выплаты дивидендов цена акции уменьшается. Мы предполагаем, что она уменьшается ровно на величину выплачиваемых дивидендов. Следовательно, при оценивании опциона на эту акцию необходимо учитывать будущие уменьшения ее цены. В случае европейского опциона колл предполагается, что цена акции состоит из двух компонент – рисковой и безрисковой.
Если рассматривать опционы на индекс, то выплата дивидендов по акциям, входящим в этот индекс, происходит довольно часто. В этом случае с большой степенью точности можно считать, что дивиденты выплачиваются непрерывно.
Пусть нам нужно вычислить цену европейского колл-опциона на акции компании ААА, по которым непрерывно начисляются дивиденды по ставке q, и текущая цена которых S1
. Через время Т, т. е. в момент исполнения опциона, средняя ожидаемая цена акции ААА будет не erT (как было бы в случае отсутствия дивидендов), а e(r – q)T.Рассмотрим дополнительно акции идентичной компании ВВВ, по которым не выплачиваются дивиденды, и текущая цена которых S1
x e–qT. Через время T средняя ожидаемая цена акции ВВВ будет равна S1 x e–qT x erT = S1 x e(r – q)T, т. е. акции в среднем будут стоить одинаково, а поскольку компании идентичны, то отклонение цены их акций от среднего значения также будет одинаковым.Следовательно, в момент исполнения опциона акции будут иметь одинаковую стоимость, а значит, исполнение опционов на эти акции с одинаковыми страйками должно либо принести одинаковую прибыль, либо не принести прибыли одновременно.
При условии безарбитражности рынка на текущий момент времени европейский опцион с одним и тем же страйком на обе акции стоит одинаково, и его цена может быть вычислена по формуле Блэка – Шолца для акции без дивидендов после подстановки в нее S1
x e–qT вместо S.Итак, C1
– цена опциона колл на акцию с дивидендами имеет следующий вид:Величины d1 и d2 находятся из следующих равенств:
4. Цена опциона пут. Формула паритета пут/колл
Пока мы рассматривали только опцион колл. Теперь перейдем к рассмотрению опциона пут. Владелец опциона пут имеет право в определенный момент времени продать актив по заранее оговоренной цене. Как и в случае опциона колл, владелец может не исполнять опцион, если его исполнение для него невыгодно.
При расчете премии, выплачиваемой по опциону пут на акцию без дивидендов, можно использовать формулу паритета пут/Колл (put/call parity). Эта формула описывает зависимость между величинами премии по опционам пут и Колл на один и тот же базовый актив, имеющим одинаковый страйк K и время до исполнения Т.
Для вывода зависимости рассмотрим два портфеля.
Первый состоит из одного опциона колл и K x e–rT
долларов, которые мы вкладываем под процент r на время T.Второй состоит из одного опциона пут и одной акции.
Рассмотрим стоимость портфелей в момент исполнения опционов при разных значениях цены на акцию в тот момент времени S.
Первый портфель: