Читаем Опционы. Полный курс для профессионалов полностью

Дельта измеряется в процентах и позволяет составлять портфель, не чувствительный к изменению курса актива при малом изменении цены акции. Такой портфель называют дельта-нейтральным. Например, он может состоять из проданных двух пятидесятидельтовых коллов и купленной акции (2 опциона x 50 %) = 1 акция. Здесь 1 акция страхует (хеджирует) 2 опциона от потерь.

Если цена акции поднимется на 1 руб., то цена двух опционов поднимется также на 1 руб. (1 руб. x 2 x 50 %). Поскольку коллы были проданы, ваши потери составят 1 руб. Но потери будут компенсированы заработком на одной акции, которая подорожает на 1 руб. В итоге стоимость портфеля не изменится.

Дельта широко используется маркетмейкерами. Она позволяет покупать или продавать опционные позиции и немедленно хеджировать эти позиции на рынке базового актива.

Для дельты верна следующая формула:


delta = e–qT x N(d1).

2. Тета


Тета (theta) – производная цены опциона по времени. Она показывает, как цена опциона меняется с течением времени. Для европейского опциона ее значение всегда меньше нуля. Формула theta имеет вид:

theta = e–qT x [(–1) x S x n(d1) x ? ? (2?T) + q x S x N(d1)] – r x K x N(d2) x e–rT.


Здесь n(x) = exp{(–1) x x? ? 2} /?(2?) – плотность стандартного нормального распределения.

Отсюда видно:

• чем выше ставка q и ниже ставка r, тем меньше падает цена опциона с каждым прошедшим днем;

• чем выше волатильность, тем больше падает цена опциона с каждым прошедшим днем.


Тета – очень важный показатель. Она выражает стоимость держания опционной позиции. Инвесторы, держащие опционную позицию в ожидании благоприятного движения цены основного актива, каждый день теряют часть стоимости позиции. Поэтому они должны быть очень внимательны к величине теты.

3. Гамма


Гамма (gamma) – вторая производная цены опциона C по цене актива S. Если дельта – скорость автомобиля, то гамма – его ускорение.

Гамма предсказывает, насколько изменится дельта при изменении S. Чем меньше гамма, тем дельта менее чувствительна к изменению цены. Вернемся к понятию дельта-нейтрального портфеля: он не чувствителен к изменению курса актива при малом изменении цены акции. Если же изменение больше «малого», необходимо некое изменение в размере хеджа (увеличение или уменьшение количества акций), чтобы портфель остался безрисковым.

Для гаммы справедлива следующая формула:


gamma = [n(d1) x e–qT] ? [S x ? x ?T].

Предположим, что dS – изменение цены актива за сравнительно малый отрезок времени dT, а dП – соответствующее изменение цены портфеля. Тогда для дельта-нейтрального портфеля


dП = theta x dT + gamma x dS? ? 2.

Владелец портфеля с положительным значением гаммы (купивший опционы, «длинная гамма») выигрывает при значительных колебаниях цены и проигрывает при небольших изменениях.

Владелец портфеля с отрицательным значением гаммы (продавший опционы, особенно краткосрочные) проигрывает тем больше, чем больше колебание цены. Отсюда следует, что для актива с большой волатильностью выгоднее иметь позицию с положительной гаммой, а для актива с маленькой волатильностью выгоднее иметь позицию с отрицательной гаммой.

4. Взаимосвязь параметров


Все три величины – delta, gamma и theta – взаимосвязаны. Если C – цена опциона, а S – цена актива, то


theta + (r – q) x S x delta + (?? ? 2) x S? x gamma = r x C.

Из формулы следует, что при изменении одного из параметров остальные два также изменяют свое значение. Эта формула наглядно демонстрирует, что два опциона с одинаковой ценой и разным значением одного из «греков» не могут иметь одинаковые значения других «греков».

5. Вега


До сих пор мы предполагали, что волатильность актива постоянна. Однако в реальной жизни это не так. Поэтому имеет смысл рассматривать вегу (vega) – значение производной цены опциона C по волатильности ?. Вега измеряется в процентах и показывает, насколько цена опциона чувствительна к изменению волатильности актива, т. е. как изменится стоимость опциона при увеличении волатильности на один процент.

Значение веги можно найти по следующей формуле:


vega = S x ?T x n(d1) x e–qT.

Величина вега очень важна для маркетмейкеров. Даже если портфель дельта-нейтральный, они могут потерять деньги или получить дополнительную прибыль при изменении волатильности. Если маркетмейкер ожидает, что волатильность увеличится, он должен попытаться сформировать портфель с положительным значением веги, и наоборот. Если у него нет никаких ожиданий относительно веги, он должен сформировать вега-нейтральный портфель, т. е. портфель, не чувствительный к изменению волатильности. Такой портфель может быть получен только путем покупки или продажи других опционов. Обычно волатильность оценивается не для всей позиции, а отдельно по позициям, имеющим одну дату исполнения. Например, вега для одномесячных опционов, вега для двухмесячных опционов и т. д.

Перейти на страницу:

Похожие книги