Читаем Опционы полностью

Управления капиталом и распределение капитала между элементами портфеля. Для базового варианта частично-направленной стратегии доля инвестируемого капитала всегда составляет 100 %. Это означает, что весь капитал инвестируется в портфель и все средства, высвобождающиеся после закрытия позиций, реинвестируются. Распределение капитала между элементами портфеля осуществляется по принципу эквивалентности позиции в акциях (размер позиции по каждой комбинации выбирается таким образом, что в случае исполнения опционов сумма вложений во все базовые активы будет приблизительно равной). Применение этого принципа для частично-направленной стратегии осложняется неравным количеством коллов и путов в одной комбинации. Для асимметричных комбинаций объем средств, необходимых для исполнения опционов, зависит от того, какая сторона комбинации (колл или пут) окажется в деньгах. Если в определенный момент времени имеется C свободных средств и получено m сигналов на открытие позиций, то объем позиции по каждой комбинации определяется как:

где Sc и Sp – страйки опционов колл и пут, r – соотношение коллов и путов, Np и Nc – количество покупаемых или продаваемых опционов пут и колл соответственно.

Методы и инструменты управления рисками. В отличии от маркет-нейтральных стратегий соблюдение принципа дельта-нейтральности портфеля не является обязательным условием при управлении рисками частично-направленной стратегии. Тем не менее индексная дельта и в этом случае остается основным инструментом управления рисками. Индексная дельта позволяет оценить меру неуравновешенности портфеля, степень асимметричность платежной функции портфеля, а также размеры потенциальных убытков, которые могут возникнуть при неблагоприятных обстоятельствах (если большинство прогнозов окажутся неверными). Другие показатели (VaR, коэффициент асимметричности, вероятность убытка) также могут использоваться для оценки и управления рисками.

<p>1.5.5. Факторы, влияющие на соотношение опционов колл и пут в портфеле</p>

Соотношение опционов колл и пут оказывает большое влияние на форму платежной функции портфеля, которая, в свою очередь, определяет основные свойства торговой стратегии. Существует множество факторов, одновременно воздействующих на соотношение колл/пут в портфеле. Влияние некоторых из них мы продемонстрируем на примере базовой частично-направленной стратегии. Для этого мы провели статистический анализ, основанный на данных опционного рынка за десятилетний период (с марта 2000 по апрель 2010 г.). На протяжении всего периода мы моделировали формирование портфелей в соответствии с принципами, описанными для базовой стратегии. Параметр «порог критерия» был зафиксирован на нулевой отметке (то есть открывающий сигнал генерировался для всех комбинаций с положительным значением критерия), а для параметра «диапазон страйков» мы приняли равным 50 %. Сигналы рассчитывались по котировкам закрытия предыдущего торгового дня.

Соотношение опционов колл и пут в портфеле можно представить тремя разными способами. Объясним это на примере, представленном на нижнем правом графике рис. 1.5.4. В этом случае одна короткая комбинация с соотношением 1: 3 объединяется с двумя длинными, имеющими соотношения 1: 3 и 2: 3. Если суммировать все коллы и путы, то получим соотношение 4: 9 (или 0,44). Этот способ не учитывает тот факт, что влияние на платежную функцию коллов, входящих в состав короткой комбинации, в определенной мере компенсируется влиянием коллов, относящихся к длинным комбинациям. (То же можно сказать и о путах.) Второй способ заключается в представлении количества коротких опционов в качестве отрицательной величины. Используя этот принцип расчета, получаем соотношение 2: 3 (или 0,67). В этом случае короткая комбинация с соотношением 1: 3 и длинная комбинация с таким же соотношением полностью компенсируют друг друга. Этот метод, в котором соотношение может быть отрицательной величиной, также обладает существенным недостатком. Если портфель состоит из большого количества длинных и коротких комбинаций, то их взаимное сокращение исказит информацию о соотношении колл/пут портфеля. Например, если в портфель входят 10 коротких стрэнглов с соотношением 1: 1, 10 длинных стрэнглов с таким же соотношением и один длинный стрэнгл с соотношением 1: 2, то результирующим будет соотношение колл/пут 0,5. Отражает ли такой показатель истинное положение дел? Весьма сомнительно.

Перейти на страницу:

Похожие книги

Строить. Неортодоксальное руководство по созданию вещей, которые стоит делать
Строить. Неортодоксальное руководство по созданию вещей, которые стоит делать

Тони Фаделл возглавлял команды, создавшие iPod, iPhone и Nest Learning Thermostat, и за 30 с лишним лет работы в Кремниевой долине узнал о лидерстве, дизайне, стартапах, Apple, Google, принятии решений, наставничестве, сокрушительных неудачах и невероятных успехах столько, что хватило бы на целую энциклопедию. Тони использует примеры, которые мгновенно захватывают внимание, например, процесс создания самых первых iPod и iPhone. Каждая глава призвана помочь читателю решить проблему, с которой он сталкивается в данный момент - как получить финансирование для своего стартапа, уйти с работы или нет, или просто как вести себя с придурком в соседнем кабинете. Тони прокладывал свой путь к успеху рядом с такими наставниками, как Стив Джобс и Билл Кэмпбелл, иконами Кремниевой долины, которые снова и снова добивались успеха. Но Тони не следует кредо Кремниевой долины, согласно которому для создания чего-то великого необходимо изобретать все с нуля. Его советы нестандартны, потому что они старой закалки. Тони понял, что человеческая природа не меняется. Не нужно изобретать способы руководства и управления - нужно изобретать то, что ты делаешь. Тони Фаделл – американский топ-менеджер. Он создал iPod и iPhone, основал компанию Nest и создал самообучающийся термостат Nest. За свою карьеру Тони стал автором более 300 патентов. Сейчас он возглавляет инвестиционную и консультационную компанию Future Shape, где занимается наставничеством нового поколения стартапов, которые меняют мир.  

Tony Fadell , Тони Фаделл

Финансы / Прочая компьютерная литература / Банковское дело