Читаем Опционы полностью

Второй недостаток заключается в том, что найденное в результате целенаправленного поиска решение не несет в себе информацию о значениях целевой функции в узлах, соседствующих с узлом оптимального решения. Это означает, что мы не имеем возможности определить свойства оптимальной области, окружающей найденный экстремум. Следовательно, мы не в состоянии оценить степень робастности оптимального решения. Как обсуждалось в разделе 2.5, робастность является одним из основных показателей надежности оптимизации. Решить эту проблему можно только одним способом – вычислить значения целевой функции во всех узлах, окружающих найденные экстремумы. После этого можно оценить их робастность (используя одну из методик, описанных в разделе 2.5) и выбрать наилучший вариант в качестве оптимального решения.

<p>2.7.1. Обзор основных методов целенаправленного поиска</p></span><span><p>Метод покоординатного подъема</p></span><span>

Метод покоординатного подъема (обычно в названии этого метода используется слово «спуск», однако, как уже объяснялось ранее, для оптимизации торговых стратегий предпочтительно решать задачу максимизации прибыли) состоит в том, что последовательно производится поиск по каждому параметру, выбирая их один за другим по очереди. Алгоритм данного метода можно представить в следующем виде.

1. Выбирается стартовый узел, с которого начинается процесс оптимизации (выбор начальной точки требуется для инициации любого метода целенаправленного поиска). Выбор может быть случайным, осознанным (то есть основанным на предварительных знаниях разработчика) либо вычисленным (например, если будет производиться множество повторяющихся оптимизаций, то стартовые узлы могут распределяться в оптимизационном пространстве равномерно).

2. Поскольку параметры оптимизируются не одновременно, а последовательно, необходимо определить их очередность. В большинстве случаев очередность не имеет большого значения. Однако если какой-либо параметр более важен, чем другие, то начинать оптимизацию нужно именно с него.

3. Начиная со стартовой точки, находится наилучшее решение по первому параметру. Поиск его осуществляется каким-либо методом одномерной оптимизации. В большинстве случаев допустимо использовать полный перебор, поскольку количество вычисляемых узлов в этом случае относительно невелико. При исследовании первого параметра значения всех других параметров остаются зафиксированными на значениях стартового узла.

4. Переход к оптимизации по следующему параметру производится после того, как найдено наилучшее решение по первому. Вновь производится одномерная оптимизация, при этом значения всех других параметров остаются зафиксированными на значениях узла, найденного в ходе оптимизации первого параметра.

5. Закончив один оптимизационный цикл (заключающийся в одномерной оптимизации каждого из параметров), возобновляем процедуру, начиная с первого по списку параметра. Процесс останавливается после того, как очередной оптимизационный цикл не находит решение, превосходящее по значению целевой функции предыдущее.

Рассмотрим практическое применение данного алгоритма на примере оптимизации базовой дельта-нейтральной стратегии по целевой функции «прибыль» (оптимизационное пространство показано на рис. 2.2.2). Для того чтобы представить процедуру поиска оптимального решения визуально, ограничим области допустимых значений параметров диапазонами 2–80 для параметра «число дней до экспирации» и 100–300 для параметра «период истории для расчета HV». Выполнение алгоритма происходит следующим образом:

1. Выбираем стартовую точку. Предположим, что случайным образом был выбран узел с координатами 60 и 130. На рис. 2.7.1 данный узел отмечен номером 1.

2. Зафиксировав параметр «число дней до экспирации» на значении 60, вычисляем целевую функцию для всех значений параметра «период истории для расчета HV» (одномерная оптимизация методом полного перебора).

3. Определяем узел с максимальным значением целевой функции. В данном примере таким узлом является узел с координатами 30 и 250 (точка номер 2 на рис. 2.7.1).

4. Фиксируем значение параметра «период истории для расчета HV» на значении 250 и вычисляем целевую функцию для всех значений параметра «число дней до экспирации». Максимальное значение функции оказалось в узле с координатами 40 и 250 (третья точка).

5. Фиксируем число дней до экспирации на значении 40 и вычисляем целевую функцию для всех значений периода истории. Попадаем на следующий узел с координатами 40 и 170 (четвертая точка).

6. Фиксируем период истории на значении 170 и вычисляем целевую функцию для всех дней до экспирации. Попадаем на пятую точку с координатами 30 и 170.

7. Фиксируем число дней до экспирации на 30 и вычисляем целевую функцию для всех значений периода истории. Попадаем на шестую точку с координатами 30 и 105.

Перейти на страницу:

Похожие книги

Строить. Неортодоксальное руководство по созданию вещей, которые стоит делать
Строить. Неортодоксальное руководство по созданию вещей, которые стоит делать

Тони Фаделл возглавлял команды, создавшие iPod, iPhone и Nest Learning Thermostat, и за 30 с лишним лет работы в Кремниевой долине узнал о лидерстве, дизайне, стартапах, Apple, Google, принятии решений, наставничестве, сокрушительных неудачах и невероятных успехах столько, что хватило бы на целую энциклопедию. Тони использует примеры, которые мгновенно захватывают внимание, например, процесс создания самых первых iPod и iPhone. Каждая глава призвана помочь читателю решить проблему, с которой он сталкивается в данный момент - как получить финансирование для своего стартапа, уйти с работы или нет, или просто как вести себя с придурком в соседнем кабинете. Тони прокладывал свой путь к успеху рядом с такими наставниками, как Стив Джобс и Билл Кэмпбелл, иконами Кремниевой долины, которые снова и снова добивались успеха. Но Тони не следует кредо Кремниевой долины, согласно которому для создания чего-то великого необходимо изобретать все с нуля. Его советы нестандартны, потому что они старой закалки. Тони понял, что человеческая природа не меняется. Не нужно изобретать способы руководства и управления - нужно изобретать то, что ты делаешь. Тони Фаделл – американский топ-менеджер. Он создал iPod и iPhone, основал компанию Nest и создал самообучающийся термостат Nest. За свою карьеру Тони стал автором более 300 патентов. Сейчас он возглавляет инвестиционную и консультационную компанию Future Shape, где занимается наставничеством нового поколения стартапов, которые меняют мир.  

Tony Fadell , Тони Фаделл

Финансы / Прочая компьютерная литература / Банковское дело