Читаем Опционы полностью

12. Как мы уже видели в предыдущих примерах (метод Хука−Дживса), дальнейшего улучшения не происходит и, следовательно, алгоритм останавливается. Оптимальным решением является узел номер 8.



Метод Розенброка представляет собой усовершенствование методов покоординатного подъема и Хука−Дживса. В некоторых случаях он может заметно улучшить эффективность поиска, однако это происходит далеко не всегда. В определенных условиях, зависящих в основном от формы и структуры оптимизационного пространства, эффективность поиска может не только не повыситься, но даже снизиться.

Метод Нелдера – Мида

Существуют две разновидности метода Нелдера – Мида (называемый также методом деформируемого многогранника, симплексным поиском, поиском методом амебы) – первоначальная, с использованием правильного симплекса, и усовершенствованная, с использованием деформируемого симплекса (в этом разделе мы рассмотрим усовершенствованную разновидность). Название отчасти может вводить в заблуждение, поскольку известен симплекс-метод линейного программирования, решающий задачу оптимизации с линейной целевой функцией при линейных ограничениях, с которым описываемый метод не имеет почти ничего общего. Под симплексом понимается многогранник в n-мерном пространстве, имеющий n + 1 вершину. Его можно рассматривать как обобщение треугольника на случай более чем двух измерений. Треугольник, в свою очередь, является примером симплекса в двумерном пространстве.

В процессе оптимизации симплекс, образно говоря, перекатывается в пространстве параметров, приближаясь к экстремуму. Вычислив значения целевой функции в его вершинах, находим худшее из них и перемещаем симплекс так, чтобы прочие вершины остались на месте, а взамен вершины с худшим значением была бы включена вершина, симметричная «худшей» относительно центра тяжести симплекса. Особенно наглядно это можно представить в двумерном случае, когда симплекс, а им в этом случае является треугольник, перекатывается через сторону треугольника, противолежащую к «худшей» вершине. Таким образом симплекс приближается к экстремуму, пока такие движения не перестанут улучшать целевую функцию. Наилучшая из полученных вершин является оптимальным решением. Однако у такого метода есть очевидный недостаток. Когда мы окажемся в непосредственной близости экстремума, так что расстояние от центра симплекса до экстремума станет меньше стороны симплекса, он потеряет способность приближаться к экстремуму. В этом случае можно уменьшить размер симплекса, при том, что он сохранит исходную форму, и продолжить поиск, повторяя это уменьшение размеров при потере способности приближаться к экстремуму, пока длина стороны не станет меньше шага оптимизации.

Метод деформируемого симплекса (деформируемого многогранника), помимо «перекатывания» его в пространстве параметров, включает и изменение его формы (что объясняет еще одно его название – «метод амебы»). Если у метода правильного симплекса нет иных параметров, кроме длины ребра симплекса, то здесь вводится система из четырех выбираемых исследователем параметров: коэффициент отражения α (обычно принимаемый равным 1), коэффициент растяжения σ (часто принимаемый равным 2), коэффициент сжатия γ (часто выбираемый равным 0,5), коэффициент редукции ρ (также может быть выбран 0,5). Как показывает опыт, выбор значений коэффициентов может оказаться критическим для получения удовлетворительных результатов оптимизации. Иногда рекомендуют выбирать коэффициенты γ и σ так, чтобы они не были взаимно обратными, например 2/3 и 2.

Алгоритм метода Нелдера – Мида состоит из следующих шагов:

1. Выбираются n + 1 точка начального симплекса x1, x2xn+1. Это могут быть любые точки, не принадлежащие n-мерной гиперплоскости. В двумерном случае, когда симплекс является треугольником, достаточно, чтобы три точки не лежали на одной прямой.

2. Точки упорядочиваются согласно значениям целевой функции (при условии, что ставится задача максимизации функции):



3. Вычисляется точка x0, являющаяся центром тяжести фигуры, вершины которой совпадают с точками симплекса, за исключением «худшей» точки xn + 1:



Для двумерной оптимизации x0 располагается посредине отрезка, соединяющего лучшую и среднюю (по значениям целевой функции) точки треугольника.

4. Шаг отражения. Вычисляем отраженную точку:



Если значение целевой функции в отраженной точке лучше, чем во второй «худшей» точке xn, но при этом не лучше, чем в наилучшей x1, то отраженная точка заменяет в симплексе удаленную из него «худшую», и алгоритм возвращается на шаг 2 (симплекс «перекатился», уйдя от «худшей» точки в сторону увеличения целевой функции). Если значение целевой функции в «отраженной точке» лучше, чем во всех исходных точках, переходим к шагу 5.

5. Шаг растяжения. Производится вычисление «точки растяжения». Она находится на одном направлении с вектором, проведенным из «худшей» точки симплекса к центру тяжести, но дальше на величину, определяемую коэффициентом растяжения:



Перейти на страницу:

Похожие книги

Строить. Неортодоксальное руководство по созданию вещей, которые стоит делать
Строить. Неортодоксальное руководство по созданию вещей, которые стоит делать

Тони Фаделл возглавлял команды, создавшие iPod, iPhone и Nest Learning Thermostat, и за 30 с лишним лет работы в Кремниевой долине узнал о лидерстве, дизайне, стартапах, Apple, Google, принятии решений, наставничестве, сокрушительных неудачах и невероятных успехах столько, что хватило бы на целую энциклопедию. Тони использует примеры, которые мгновенно захватывают внимание, например, процесс создания самых первых iPod и iPhone. Каждая глава призвана помочь читателю решить проблему, с которой он сталкивается в данный момент - как получить финансирование для своего стартапа, уйти с работы или нет, или просто как вести себя с придурком в соседнем кабинете. Тони прокладывал свой путь к успеху рядом с такими наставниками, как Стив Джобс и Билл Кэмпбелл, иконами Кремниевой долины, которые снова и снова добивались успеха. Но Тони не следует кредо Кремниевой долины, согласно которому для создания чего-то великого необходимо изобретать все с нуля. Его советы нестандартны, потому что они старой закалки. Тони понял, что человеческая природа не меняется. Не нужно изобретать способы руководства и управления - нужно изобретать то, что ты делаешь. Тони Фаделл – американский топ-менеджер. Он создал iPod и iPhone, основал компанию Nest и создал самообучающийся термостат Nest. За свою карьеру Тони стал автором более 300 патентов. Сейчас он возглавляет инвестиционную и консультационную компанию Future Shape, где занимается наставничеством нового поколения стартапов, которые меняют мир.  

Tony Fadell , Тони Фаделл

Финансы / Прочая компьютерная литература / Банковское дело