Читаем Опционы полностью

Содержательный смысл этой операции таков: если найдено направление, в котором целевая функция возрастает, симплекс растягивается в этом направлении. Если «точка растяжения» окажется лучше «отраженной точки», то последняя заменяется в симплексе «точкой растяжения», и он становится вытянутым в этом направлении. После этого возвращаемся в шаг 2. Если «точка растяжения» окажется не лучше «отраженной точки», то смысла в растяжении нет, в симплексе остается «отраженная точка», и форма его не меняется. Также следует возврат к шагу 2.

6. Шаг сжатия. На этот шаг мы попадаем, если отраженная точка не оказывается лучше хотя бы «второй худшей» точки. Производится вычисление «точки сжатия»:



Если полученная точка оказывается лучше «худшей» точки, то она заменяет ее в симплексе, и мы переходим в шаг 2. Симплекс при этом сожмется в этом направлении. Если же полученная точка окажется хуже и «худшей» точки, то это может свидетельствовать не о неудачном выборе направления, а о том, что мы уже находимся в непосредственной близости экстремума и для его нахождения необходимо уменьшить размер симплекса, чтобы не проскочить мимо него. Переходим к шагу 7.

7. Шаг редукции (reduction). Точка с наилучшим значением целевой функции остается на месте, а все остальные стягиваются к ней.



Если размер симплекса (ввиду его неправильной формы, нужно определить это понятие особо, например как максимальное расстояние от центра тяжести среди всех вершин) окажется меньше заданной величины, то алгоритм заканчивается. В противном случае переходим на шаг 2.


Рассмотрим практическое применение метода Нелдера – Мида для базовой дельта-нейтральной стратегии. Ограничим области допустимых значений параметров: 10–38 для параметра «число дней до экспирации» и 70–140 для параметра «период истории для расчета HV». Для выполнения алгоритма следует исполнить следующие процедуры:

1. Выбираем три точки начального симплекса. Предположим, что в качестве вершин симплекса были выбраны узлы с координатами 12 и 105, 18 и 110, 18 и 100.

2. Находим худший (по значению целевой функции) узел начального симплекса. Данный узел отмечен номером 1 на рис. 2.7.4.

3. Вычисляем центр тяжести отрезка с координатами 18 и 110, 18 и 100. Центром является узел с координатами 18 и 105.

4. Выполняем шаг отражения, используя коэффициент растяжения α = 1. Отраженная точка, отмеченная номером 2 на рис. 2.7.4, имеет координаты 24 и 105. Поскольку значение целевой функции в отраженной точке лучше, чем во всех точках начального симплекса, переходим к шагу растяжения.

5. Вычисляем «точку растяжения», используя коэффициент растяжения σ = 2. Она находится путем удвоения расстояния между центром тяжести симплекса и второй точкой. Полученный узел (отмечен номером 3 на рис. 2.7.4) имеет более высокое значение целевой функции по сравнению с узлом номер 2 и поэтому заменяет последний, становясь новой вершиной симплекса.

6. Выполняем очередной шаг отражения. Отраженная точка отмечена номером 4 на рис. 2.7.4. Поскольку значение целевой функции в отраженной точке ниже, чем во второй худшей точке предыдущего симплекса, переходим к шагу сжатия.

7. Вычисляем «точку сжатия», используя коэффициент сжатия γ = 0,5. Получаем узел под номером 5. Поскольку этот узел лучше худшего в предыдущем симплексе, но не самый лучший, переходим к шагу отражения.

8. Выполняя шаг отражения, получаем узел номер 6. Поскольку значение целевой функции в этом узле ниже, чем во всех точках предыдущего симплекса, переходим к шагу сжатия.

9. Вычислив «точку сжатия», получаем точку номер 7. Поскольку данная точка попадает между двумя узлами, дальнейшее выполнение стандартного алгоритма Нелдера – Мида для данного оптимизационного пространства невозможно. Для выбора окончательного оптимального решения можно пойти несколькими путями. Можно вычислить целевую функцию точки 7 путем интерполяции как среднее арифметическое целевых функций узлов с координатами 32 и 100, 34 и 100. После чего можно продолжить исполнение стандартного алгоритма, вычисляя таким же образом все точки, не попадающие на узлы оптимизационного пространства. Другой, более простой, путь состоит в выборе оптимального решения среди одной из вершин последнего симплекса (той, которая имеет наибольшее значение целевой функции).



Этот алгоритм показал себя достаточно эффективным в решении задач разного рода и при этом достаточно прост в реализации. Осиновым его недостатком является большое количество параметров-коэффициентов, от выбора которых может сильно зависеть эффективность оптимизации. Как будет показано в следующем разделе, для эффективного использования метода Нелдера – Мида необходима тонкая настройка параметров и предварительная информация о свойствах оптимизационного пространства.

2.7.2. Сравнение эффективности основных методов целенаправленного поиска

Перейти на страницу:

Похожие книги

Строить. Неортодоксальное руководство по созданию вещей, которые стоит делать
Строить. Неортодоксальное руководство по созданию вещей, которые стоит делать

Тони Фаделл возглавлял команды, создавшие iPod, iPhone и Nest Learning Thermostat, и за 30 с лишним лет работы в Кремниевой долине узнал о лидерстве, дизайне, стартапах, Apple, Google, принятии решений, наставничестве, сокрушительных неудачах и невероятных успехах столько, что хватило бы на целую энциклопедию. Тони использует примеры, которые мгновенно захватывают внимание, например, процесс создания самых первых iPod и iPhone. Каждая глава призвана помочь читателю решить проблему, с которой он сталкивается в данный момент - как получить финансирование для своего стартапа, уйти с работы или нет, или просто как вести себя с придурком в соседнем кабинете. Тони прокладывал свой путь к успеху рядом с такими наставниками, как Стив Джобс и Билл Кэмпбелл, иконами Кремниевой долины, которые снова и снова добивались успеха. Но Тони не следует кредо Кремниевой долины, согласно которому для создания чего-то великого необходимо изобретать все с нуля. Его советы нестандартны, потому что они старой закалки. Тони понял, что человеческая природа не меняется. Не нужно изобретать способы руководства и управления - нужно изобретать то, что ты делаешь. Тони Фаделл – американский топ-менеджер. Он создал iPod и iPhone, основал компанию Nest и создал самообучающийся термостат Nest. За свою карьеру Тони стал автором более 300 патентов. Сейчас он возглавляет инвестиционную и консультационную компанию Future Shape, где занимается наставничеством нового поколения стартапов, которые меняют мир.  

Tony Fadell , Тони Фаделл

Финансы / Прочая компьютерная литература / Банковское дело