Читаем Опыт о человеческом разумении полностью

3. Каждый модус отличается от другого. Простые модусы числа из всех других суть наиболее отличающиеся друг от друга. Самое незначительное изменение - разность на единицу - делает каждое сочетание совершенно отличным как от самого близкого ему числа, так и от самого далекого. Два так же отличается от одного, как и двести; идея двойки так же отлична от идеи тройки, как величина всей Земли от величины щепотки. Не так бывает с другими простыми модусами, в которых нам не так легко, а иногда, быть может, и невозможно различить две смежные идеи, которые, однако, в действительности различаются. Кто попробует найти разницу между белым цветом этой бумаги и белым цветом ближайшего к нему оттенка? Кто может образовать различные идеи каждого самого малого увеличения протяженности?

4. Поэтому доказательства при помощи чисел суть самые точные. Ясность и определенность каждого модуса числа, отличающегося от всех других, даже самого ближайшего, заставляет меня считать доказательства при помощи чисел если не более очевидными и точными, нежели геометрические, то более общими по своему употреблению и более определенными по своему применению. Ибо идеи чисел более отчетливы и различимы, нежели идеи протяженности, в которых не так легко подметить или измерить всякое равенство и превышение; ибо наши мысли о пространстве не могут прийти к какой-нибудь определенной малой величине, за пределы которой идти нельзя, как, например, к единице, и потому не могут быть выявлены величина или соотношение какого-нибудь очень незначительного превышения. В числах, напротив, они совершенно ясны. Здесь, как уже было сказано, 91 отличается от 90 не меньше, чем от 9000, хотя 91 - ближайшее непосредственное превышение 90. Не так с протяженностью, где то, что лишь немного больше фута или дюйма, нельзя отличить от эталона фута или дюйма. Из линий, которые кажутся одинаковыми, одна может быть длиннее другой на часть, не могущую быть выраженной в числах. Никто не может указать угол, который был бы минимально больше прямого.

5. Имена необходимы для чисел. Как уже было сказано, повторением идеи единицы и соединением ее с другой единицей мы образуем из них одну совокупную идею, обозначенную именем «два». И кто может так действовать и идти таким образом вперед, все время прибавляя по одной единице к последней полученной им совокупной идее числа, и дает ей имя, тот может считать или получать идеи для отличных друг от друга совокупностей единиц до тех пор, пока у него будет ряд имен для следующих чисел и память для удержания этого ряда с его различными именами. Ибо всякий счет есть не что иное, как постоянное прибавление по единице и сообщение каждой сумме, как охватываемой одной идеей, нового или особого названия или знака, чтобы посредством этого узнать ее (его) среди предыдущих и следующих чисел и отличать от каждого меньшего или большего множества единиц. Так что кто может прибавить единицу к единице, потом к двум и идти таким образом вперед в своем счете, все время применяя особые названия для каждого возрастания; кто может, с другой стороны, посредством вычитания единицы от каждой суммы идти назад и уменьшать их, тот способен в пределах своего языка получить все идеи чисел или те идеи, для которых у него есть имена, хотя, быть может, и не больше. Так как различные простые модусы чисел в нашем уме есть лишь столько-то сочетаний единиц, не заключающих в себе никакого разнообразия и различающихся только большей или меньшей величиной, то для каждого отдельного сочетания имена, или знаки, по-видимому, более необходимы, чем для других видов идей, ибо без таких имен, или знаков, мы едва ли можем с пользой употреблять числа при счете, особенно там, где сочетание составилось из большого числа единиц. Если соединить единицы и не дать имени, или знака, для различения именно этого сочетания, то трудно будет предохранить их от смешения в кучу.

Перейти на страницу:

Все книги серии Философское наследие

Опыты, или Наставления нравственные и политические
Опыты, или Наставления нравственные и политические

«Опыты, или Наставления нравственные и политические», представляющие собой художественные эссе на различные темы. Стиль Опытов лаконичен и назидателен, изобилует учеными примерами и блестящими метафорами. Бэкон называл свои опыты «отрывочными размышлениями» о честолюбии, приближенных и друзьях, о любви, богатстве, о занятиях наукой, о почестях и славе, о превратностях вещей и других аспектах человеческой жизни. В них можно найти холодный расчет, к которому не примешаны эмоции или непрактичный идеализм, советы тем, кто делает карьеру.Перевод:опыты: II, III, V, VI, IX, XI–XV, XVIII–XX, XXII–XXV, XXVIII, XXIX, XXXI, XXXIII–XXXVI, XXXVIII, XXXIX, XLI, XLVII, XLVIII, L, LI, LV, LVI, LVIII) — З. Е. Александрова;опыты: I, IV, VII, VIII, Х, XVI, XVII, XXI, XXVI, XXVII, XXX, XXXII, XXXVII, XL, XLII–XLVI, XLIX, LII–LIV, LVII) — Е. С. Лагутин.Примечания: А. Л. Субботин.

Фрэнсис Бэкон

Европейская старинная литература / Древние книги

Похожие книги

Эмпиризм и субъективность. Критическая философия Канта. Бергсонизм. Спиноза (сборник)
Эмпиризм и субъективность. Критическая философия Канта. Бергсонизм. Спиноза (сборник)

В предлагаемой вниманию читателей книге представлены три историко-философских произведения крупнейшего философа XX века - Жиля Делеза (1925-1995). Делез снискал себе славу виртуозного интерпретатора и деконструктора текстов, составляющих `золотой фонд` мировой философии. Но такие интерпретации интересны не только своей оригинальностью и самобытностью. Они помогают глубже проникнуть в весьма непростой понятийный аппарат философствования самого Делеза, а также полнее ощутить то, что Лиотар в свое время назвал `состоянием постмодерна`.Книга рассчитана на философов, культурологов, преподавателей вузов, студентов и аспирантов, специализирующихся в области общественных наук, а также всех интересующихся современной философской мыслью.

Жиль Делез , Я. И. Свирский

История / Философия / Прочая старинная литература / Образование и наука / Древние книги