Заметим, что психология как научная дисциплина в отношении включения фактора времени в регрессионные модели находится в весьма затруднительном положении по сравнению с другими дисциплинами (например, экономикой, биологией). В экономике и биологии в регрессионной модели фактор времени включается в моделирование в виде статистических данных, собранных на протяжении определенных предшествующих интервалов времени, чего практически не встретишь в психологии. Причин тому несколько. Например, одной из причин такого положения вещей (невозможность сформировать статистические базы данных на определенных периодах развития изучаемых явлений) является отсутствие в психологии надежного измерительного инструментария (за исключением психологии ощущения и восприятия (сантиметры, секунды)), позволяющего хотя бы отчасти сохранить объективность результатов измерений.
Иногда в литературе можно обнаружить исследования, в которых психологи-исследователи для нахождения каузальной связи используют дисперсионный анализ (ANOVA, MANOVA). Но дисперсионный анализ позволяет определить
Таким образом, выделим
Тогда возникает вопрос: какую же связь позволяет находить регрессионный анализ?
В ответе на этот вопрос дадим характеристику той связи, с которой имеет дело психолог-исследователь после проведения эмпирического исследования, когда выполнены все требования к технологиям сбора эмпирических результатов и соблюдены требования к объему статистической выборки.
Если выполнены вышеназванные условия (соблюдены требования к технологиям сбора эмпирических результатов и к объему статистической выборки) и полученные эмпирические результаты нанесены на двумерный график, то мы столкнемся с тем, что всегда одним и тем же значениям одной переменной будут соответствовать разные значения другой переменной.
На рис. 1.1 представлены два возможных варианта графического представления такой ситуации.
Связь, которая представлена на рис. 1.1, называется вероятностной (стохастической).
Количественным выражением такого вида связи является коэффициент корреляции.
При стохастической связи переменные как случайные величины заданы совместным распределением вероятностей величины.
Не вдаваясь в объяснение статистических технологий решения задачи о нахождении количественного выражения данного вида связи (коэффициента корреляции)3
, охарактеризуем основнойОн заключается в том, что у нас нет никакой возможности даже с определенной долей вероятности спрогнозировать конкретную количественную выраженность одной переменной при условии, что вторая переменная будет также принимать конкретные количественные значения.
Для того чтобы решить эту задачу, необходимо перейти к другому виду выражения этой связи – математическому, позволяющему отражать эту связь в виде определенной математической функции (функциональная связь).
Таким образом, выделим
Мы обращаем внимание на тот факт, что когда разговор идет о функциональной связи, подразумевается, что она выражается определенной математической функцией. Различные виды математических функций, которые используют в регрессионном анализе, будут приведены ниже.
В таких рамках регрессионный анализ направлен на поиск ответов на два макровопроса.