Первый – определение возможного наличия связи между переменными, которую можно выразить математической функцией на базе вероятностной (стохастической) связи и которая всегда имеет место в психологии при достаточном объеме эмпирической выборки.
Второй: если эта связь существует, то какой вид математической функции ее отражает?
Поясним на примере. В психологии давно общепризнана закономерность, которая получила название закона Йеркса–Додсона и которая гласит: «По мере увеличения интенсивности мотивации качество деятельности изменяется по колоколообразной кривой: сначала повышается, затем, после перехода через точку наиболее высоких показателей успешности, постепенно снижается». Графически, в самом общем виде, это выглядит как перевернутая парабола (рис. 1.2).
Как показывает опыт преподавания в вузе, подавляющее число студентов, когда видят эту кривую, не совсем понимают, что представлен вариант кривой, на которой отражена лишь
Можно предполагать, что когда реальные экспериментальные данные наносились на график, в котором по оси абсцисс откладывалось значение такого параметра, как уровень мотивации (в эксперименте – независимая переменная), а по оси ординат – значение такого параметра, как качество деятельности (в эксперименте – зависимая переменная), то график в действительности имел
Рис. 1.3.
Модель варианта реальных экспериментальных данных в законе Йеркса–ДодсонаВ реальности связь между двумя переменными носила не функциональный характер, который отражен квадратичной функцией (параболой), а стохастический, выраженный графиком, по форме напоминающим параболу. И только в результате аппроксимации регрессией реальных данных была получена параболическая функциональная зависимость, показывающая, как изменяется
Обращаем внимание на две существенные детали.
Первая деталь не связана с методологическими аспектами науки психологии, а характерна для регрессионного анализа в любой научной дисциплине (технике, экономике, социологии и т. д.). Она заключается в том, что, усредняя значения зависимой переменной в результате проведения регрессии, мы потеряли какую-то часть информации, которая отражена в стохастической связи, но приобрели что-то очень важное – возможность численно моделировать зависимую переменную по значениям независимой переменной.
Вторая деталь, как следствие первой, связана с методологией психологии. В психологии существует несколько направлений, которые опираются на идею абсолютной уникальности каждого человека, и, следовательно, усреднения, получаемые в результате регрессионного анализа, вообще бессмысленны. В частности, на уровне усредненных значений зависимой переменной по всей выборке мы можем наблюдать рост усредненных значений зависимой переменной при повышении значений независимой переменной, а на уровне отдельного испытуемого значения зависимой переменной могут не только не изменяться, но даже уменьшаться.
1.2. Регрессионные модели и математические модели
Термин «регрессия» был предложен Ф. Гальтоном в конце XIX в. Он обнаружил, что дети родителей с высоким или низким ростом обычно не наследуют выдающийся рост, и назвал этот феномен «регрессия к посредственности». Сначала этот термин использовался исключительно в биологическом смысле. После работ К. Пирсона его стали использовать и в статистике. Регрессионный анализ – метод моделирования измеряемых данных и исследования их свойств. Данные состоят из пар значений зависимой переменной (переменной отклика) и одной или нескольких независимых переменных (объясняющей переменной). Исследование зависимости случайных величин приводит к моделям регрессии и регрессионному анализу на базе выборочных данных.
где:
С точки зрения возможности формализации закономерностей, в том числе и в психологии, необходимо различать