2) создание новых переменных, которые являются функциями от существующих переменных (например, вычисление продолжительности обучения или длительности прохождения тестов);
3) вычисление набора сводных статистических данных (например, наивысший балл из набранных обучающимися).
После того, как у вас есть структурированные данные с вычисленными переменными запускаются два основных генератора новых знаний: визуализация и моделирование. Оба имеют свои сильные и слабые стороны, и любой реальный анализ будет происходить в процессе их многократного чередования.
Визуализация – это фундаментальная человеческая деятельность. Одна хорошая визуализация покажет вам то, чего даже не ожидали, или поднимет новые вопросы об анализируемых данных. Хорошая визуализация также может намекнуть, что задаете неправильный вопрос, или что нужно собирать дополнительные данные. Визуализация может вдохновить вас, но не стоит обольщаться, так как для интерпретации результатов всё же требуется участие человека.
Моделирование является дополнительным инструментам визуализации. После того, как достаточно точно сформулировали свои вопросы, можете попробовать использовать математическую модель, чтобы ответить на них. Модели в R принципиально являются математическими и представляют собой вычислительный инструментарий, поэтому они хорошо масштабируются. Нередко бывает дешевле купить больше компьютеров, чем это купить больше мозгов. Но каждая модель при этом генерирует лишь предположения, и по своей природе математическая модель не может подвергать сомнению свои собственные предположения. Это означает, что модель сама по себе не может сделать принципиальное открытие.
Последняя ступень анализа данных: представление полученных результатов, – самая критическая часть любого аналитического проекта. При этом не важно, насколько хороши ваши модели или визуализации, если не можете передать свои идеи и результаты другим людям.
Объединяет все названные этапы – программирование, оно красной нитью проходит через каждый этап проекта, но не нужно быть опытным программистом, чтобы анализировать данные, достаточно знания базовых концепций, и желания постоянно улучшать свои навыки программирования, так как последнее позволяет автоматизировать частые задачи и проще решать новые.
Вы будете использовать названные инструменты практически в каждом проекте, но для большинства проектов их недостаточно. Есть эмпирический принцип 80/20 (закон Парето): можно решить около 80% задач каждого проекта используя методы, которыми уже владеете, но всегда понадобятся новые знания, чтобы справиться с оставшимися 20%.
Предыдущее описание инструментов обработки данных организована примерно в соответствии с той последовательностью, в которой они используются в статистическом анализе (хотя, конечно, любое правило имеет исключения). По собственному опыту, лучший порядок их освоения таков:
1) Начинать изучение с импорта данных, их очистки и систематизации является неоптимальным, так как 80% времени будет занято рутиной. Вместо этого, начнем с визуализации и преобразования данных, которые уже были импортированы и отфильтрованы. Таким образом, когда будете импортировать и приводить в порядок собственные данные, ваша мотивация останется высокой, потому что понимаете, к чему движетесь.
2) Некоторые темы лучше объяснить объединив их. Например, легче понять, как работают модели, если уже знаете о визуализации, структурированных данных, и программировании.
3) Инструменты программирования не самоцель, но все же позволяют взяться за решение значительно более сложных проблем. Поэтому весь спектр инструментов программирования будет представлен в середине книги, а затем увидите, как они могут сочетаться с другими статистическими инструментами, при решении интересных задач моделирования.
В рамках каждой главы постараемся придерживаться подхода из введения по аналогичному шаблону: начинать с некоторых мотивирующих примеров, чтобы увидеть картину в целом, а затем погрузиться в детали. Каждый раздел книги сопровождается упражнениями, позволяющими на практике закреплять пройденный материал. Хотя и бывает заманчивым пропускать их, но очень хорошо сказал Д. Пойа по этому поводу: «лучший способ научиться решать задачи состоит в том, чтобы самому решать эти задачи».