В последние годы XIX в. Чемберлин и многие другие исследователи размышляли о причинах ледниковых эпох, рассматривая не только орбитальные циклы, но и вулканизм, горообразование и циркуляцию океана. В 1896 г. шведский химик Сванте Аррениус доказал, что некоторые газы, присутствующие в небольших количествах в атмосфере, особенно
Керны как архивы данных
Наконец в 1970-е гг. были открыты два новых богатейших архива климатических данных, которые произвели революцию в климатологии, что равносильно тому, как если бы ученые, прежде перебивавшиеся случайными брошюрами в букинистической лавке, вдруг получили доступ к Библиотеке Конгресса. Этими архивами были: (1) керны глубоководных отложений, полученные благодаря океанографическим исследовательским судам нового поколения, и (2) керны полярного льда, добытые в рамках проектов глубокого бурения, осуществленных благодаря героическим усилиям международного научного сообщества в Антарктиде и Гренландии. Глубоководные районы морского дна и полярные ледяные шапки похожи тем, что в этих местах происходит медленное и постоянное накопление осадков без перерывов и помех, подобно тому как пыль постепенно покрывает мебель в закрытой комнате. Сегодня глубоководные керны из многочисленных районов Мирового океана обеспечивают нас данными о глобальном изменении климата за последние 160 млн лет (не только на протяжении ледникового периода, но и задолго до него), которые зашифрованы в вариациях геохимического состава и микроскопических окаменелостей с разрешением в тысячи лет. Ледяные керны, в свою очередь, содержат летопись атмосферных изменений за последние 700 000 лет с разрешением вплоть до года, по крайней мере в молодом льду. Разумеется, чтобы получить доступ к этой бесценной климатической информации из морских глубин и древнего льда, требуется сначала взломать их изотопный код.
Кислород, как и углерод, имеет два основных устойчивых изотопа, и, подобно тому как легкий углерод 12
C усваивается фотосинтезирующими организмами гораздо охотнее тяжелого 13C, молекулы воды, включающие легкий кислород 16O, испаряются гораздо быстрее, чем содержащие тяжелый изотоп 18O. Это означает, что в любой момент времени осадки, в том числе полярные снега, содержат больше легкого 16O и меньше тяжелого 18O, чем океанская вода, и такая изотопная сортировка еще больше увеличивается в периоды оледенения. В ледниковые эпохи, когда значительная часть воды на Земле была заблокирована в ледниках и ледяных шапках, океаны и морские организмы, строящие свои раковины из растворенных в морской воде элементов, имели особенно высокие соотношения 18O/16O. И наоборот, в слоях льда, образовавшихся в эти периоды, это соотношение было низким. Так же меняются соотношения обычного водорода (1H) и дейтерия (2H), благодаря чему ледниковый лед (который представляет собой воду, H2O, в твердой форме) также фиксирует состояние окружающей среды. Таким образом, изотопные соотношения в глубинных морских отложениях и ледниках обеспечивают нас надежными данными об изменении температурных условий и общего объема льда на планете на протяжении длительного времени.