Читаем От абака к цифровой революции полностью

СИМОН СТЕВИН

Фламандский математик, инженер, физик и семиолог Симон Стевин (1548–1620) в 1585 году опубликовал книгу DeThiende («Десятая»). В этой книге объяснялась десятичная нотация и способы вычисления расчетов в этой нотации. Стевин первым признал существование отрицательных чисел, полученных им при решении задач. Он также создал алгоритм нахождения наибольшего общего делителя двух многочленов. Он писал все труды на голландском языке, чтобы их могли понять ремесленники. Его книги были написаны очень просто и пользовались большой популярностью, что способствовало распространению десятичной системы счисления.

* * *

Число π

Как мы уже упоминали, персидский математик ал-Каши занимался вычислением числа π. В то время как Цзу Чунчжи вычислил значение π, использовав правильный многоугольник с 12288 = 3·212 сторонами, ал-Каши использовал многоугольник с числом сторон, равным 805306368 = 3·228, и верно вычислил 14 знаков π. Это произошло в 1430 году.

Математики ал-Каши и Людольф ван Цейлен вычислили новые, ранее неизвестные знаки числа π.

Профессор Лейденского университета Людольф ван Цейлен последовал путем ал-Каши и в 1596 году вычислил 20 верных знаков Я, использовав многоугольник с 515396075520 = 60·233 сторонами. Позднее, в 1615 году, он вычислил 35 верных знаков, использовав многоугольник с числом сторон, равным 4611686018427387904 = 262.

Метод вычисления числа Я с помощью многоугольников позволял получить точные результаты, однако многие математики считали, что существуют более эффективные алгоритмы. Они рассматривали возможность вычисления π как суммы или произведения бесконечного числа членов. Первым европейским математиком, который нашел подобное выражение, был Франсуа Виет, один из создателей современной алгебры. Тем не менее ему был неизвестен ряд, полученный Мадхавой из Сангамаграма, о котором мы упоминали в предыдущей главе. Выражение, полученное Виетом, представляло собой произведение бесконечного числа членов, в котором использовался квадратный корень из 2. Это выражение было не слишком удобно, однако оно открыло новый путь к вычислению множества знаков π.

Впервые в истории математики число π было выражено в виде произведения бесконечного числа членов. Это произведение выглядело следующим образом:

* * *

ФРАНСУА ВИЕТ (1540–1603)

Виет был адвокатом, государственным чиновником, но прежде всего авторитетным математиком, который первым стал обозначать члены уравнений буквами. Он славился блестящим умением взламывать шифры с помощью статистических методов. Ему удалось расшифровать переписку испанских агентов, что позволило французам получить преимущество в войне с Испанией. Незадолго до смерти он написал статью по криптографии, где изложил методы шифрования своего времени и алгоритмы их взлома.

<p>Глава 3</p><p>Первые механические вычислительные машины</p>

Появление арабских цифр ознаменовало прогресс в вычислениях и новый виток эволюции науки. В XVII веке в ходе длительного процесса значительно изменились представления о Вселенной, а также метод и сама концепция западной науки. Этот период, который часто именуется революцией в науке, открыл путь к эпохе Просвещения, начавшейся в XVIII веке. Развитие человеческой мысли происходило очень быстрыми темпами. Появлялись новые методы исчисления, которые требовали новых, более мощных, сложных и точных инструментов. Расчеты, выполняемые вручную, неизбежно становятся источником ошибок. Чтобы избежать этого, ученые стремились свести к минимуму участие человека в расчетах, что стимулировало создание механических вычислительных машин. В период, охватывающий XVII, XVIII и XIX века, были сконструированы первые механические вычислительные машины.

XVII век
Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука