Читаем От чёрных облаков к чёрным дырам полностью

Если опустить техническую сторону дела, то больше всего Эддингтона в выводе Чандрасекара беспокоила судьба той невезучей звезды, которая превысит чандрасекаровский предел массы и не сможет поэтому сохранить равновесие и воспрепятствовать сжимающей силе тяготения. Эддингтон говорил: «Звезда будет все излучать и излучать, сжиматься и сжиматься до тех пор, как я думаю, пока её радиус не достигнет нескольких километров, в этом случае тяготение станет достаточно сильным, чтобы удержать излучение, и тогда-то звезда сможет, наконец, обрести покой... Я полагаю, что должен быть какой-то закон Природы, препятствующий тому, чтобы звезда вела себя так абсурдно!»

Эддингтон совершенно правильно представил себе конечную судьбу несчастливой массивной звезды, но он ошибался в своих ожиданиях от «Природы». Мы вернёмся к его замечанию в гл. 10.

Хотя насмешливая критика Эддингтона помешала немедленному признанию предела Чандрасекара, в конце концов работа была замечена и оценена по достоинству. Забавно, что всего лишь десятилетием ранее сам Эддингтон подвергся жестокой критике за новаторскую идею о том, что ядерная энергия может быть источником света звёзд, и должен был прождать несколько лет, пока идея не получила признания! НЕЙТРОННЫЕ ЗВЁЗДЫ

Рассмотрим теперь сердцевины звёзд, оставшиеся после взрыва сверхновых. Они принадлежат звёздам, значительно более массивным, чем те, сердцевины которых стали белыми карликами. Таким образом, мы имеем дело с состояниями вещества, намного более горячими и плотными, чем у белого карлика.

Чтобы понять это состояние вещества, вернёмся к истории массивной звезды до того, как она стала сверхновой. Сценарий, описанный в гл. 8, завершался тем, что после образования ядер группы железа процессы синтеза прекращались и сердцевина звезды начинала сжиматься. В этот момент было сделано утверждение, что сжимающаяся сердцевина внезапно встречает сопротивление и отскакивает назад. Именно этот отскок заставил звезду взорваться и потерять оболочку.

Что же заставляет сердцевину звезды отскочить назад?

Теперь мы можем дать ответ. Когда сердцевина сжимается, она начинает нагреваться. Приток тепловой энергии начинает разбивать сильно связанные ядра группы железа. Этот процесс обратен процессу синтеза. Там нам удалось извлечь энергию, объединяя более лёгкие ядра с образованием тяжёлого ядра. Здесь же тяжёлое ядро разбивается на части, поглощая энергию, поставляемую нагретой сердцевиной. Разрушение ядер приводит к появлению свободных протонов и нейтронов.

Нейтрон в лаборатории не может долгое время оставаться стабильным. Если в любой данный момент времени у нас имеется группа свободных нейтронов, то по прошествии примерно 12 мин половина из них распадётся на протоны, электроны и антинейтрино. (Приставка «анти» означает, что эта частица антиматерии, соответствующая нейтрино, точно так же, как «позитрон» — античастица, соответствующая электрону.) Реакцию можно записать в виде

np + e- + ν

(Знак «минус» в символе e- означает, что электрон отрицательно заряжен, чёрточка в символе ν означает, что это антинейтрино, т.е. античастица по отношению к нейтрино.)

Однако в сердцевине нейтроны не распадаются. Происходит совершенно обратное! Протоны в сердцевине соединяются со свободными (потерянными атомами) электронами, образуя дополнительные нейтроны:

e- + pn + ν.

Этот процесс называется нейтронизацией вещества. В обычных условиях в земной лаборатории он не происходит, но становится вполне рядовым в том необычайно плотном состоянии вещества, которое имеется в сжимающейся сердцевине. Таким образом, весьма быстро сердцевина становится состоящей в основном из нейтронов.

Эти нейтроны теперь играют ту же роль в создании давления вырождения, что и электроны в белых карликах. К нейтронам применим тот же принцип Паули, не позволяющий им стать слишком тесно упакованными. Именно это сопротивление в первую очередь ответственно за отскок сердцевины (рис. 58), предшествующий взрыву сверхновой.

Рис. 58. Центральное ядро из вырожденных нейтронов препятствует коллапсу внешних частей сердцевины звезды и заставляет её раздуться

Как только оболочка будет сброшена взрывом, сердцевина начнёт опять сжиматься и вновь вступит в действие давление вырожденных нейтронов. Может, последовать другой отскок, так что сердцевина может несколько раз совершить колебания, прежде чем прийти в спокойное состояние, в котором имеется точный баланс между давлением вырождения и гравитацией, — если, конечно, полная масса сердцевины опять не слишком велика.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука