Дело в том, что здесь мы
имеем ситуацию, похожую на ту, которая была обнаружена Чандрасекаром
для белых карликов. Имеется предел для массы той звезды, которая
может удерживаться в равновесии вырожденными нейтронами. Этот предел
вычислен не слишком точно, так как физические свойства вещества при
плотностях, в миллионы миллиардов раз превышающих плотность воды,
недостаточно хорошо известны. Но большинство исследователей
склоняется к тому, что предел массы близок к значению 2 М☉.
Звёзды с массами ниже этого предела могут удержаться в равновесии и
называются
На рис. 59 схематически
показано строение нейтронной звезды из разных форм вещества —
от самого плотного состояния в центре до сравнительно разреженного во
внешней оболочке. Следует помнить, однако, что даже эти разреженные
внешние силы (
Как можно реально обнаружить нейтронную звезду? Уже упоминалось, что она слишком слаба и слишком горяча на поверхности, чтобы попасть на стандартную диаграмму Г—Р. Есть ли другие пути доказательства существования таких объектов в данном районе Галактики?
В 1964 г. Фред Хойл, Джон Уилер и я на страницах научного журнала Nature предложили способ обнаружения нейтронных звёзд по характерным для них осцилляциям. Выше упоминалось, что звезда образуется из сжимающейся сердцевины сверхновой и, прежде чем прийти в статическое состояние, испытывает несколько колебаний. Такие колебания могут продолжаться довольно долго, так как звезде нужно избавиться от значительного запаса динамической энергии. Мы привели доводы, что эта энергия может рассеиваться электромагнитными волнами, генерируемыми колебаниями звезды в её окрестности. Так, ожидается, что в окрестности звезды существует весьма большое магнитное поле, принимающее участие в колебаниях и порождающее электромагнитные волны. Вычисленная нами длина волны радиоизлучения была очень велика, около 300 м.
Далее мы показали, что такие длинные волны будут отражаться назад любым газовым облаком с достаточно большой плотностью частиц. Но при отражении волны будут давать облаку толчок в первоначальном направлении движения волн до отражения. По-видимому, волокна в Крабовидной туманности (см. рис. 52) разлетаются от источника за счёт этого эффекта.
Оказалось, что многие детали приведённого сценария правильны. Так, получило подтверждение предположение о наличии вблизи нейтронной звезды сильного магнитного поля. Обычная звезда может обладать небольшим магнитным полем. Как показано на рис. 60, при сжатии звезды магнитные силовые линии сжимаются. Поскольку в сжимающейся сердцевине звезды, превращающейся в нейтронную звезду, сжатие очень велико, это приводит к появлению вблизи поверхности звезды магнитных полей напряжённостью в тысячи миллионов гауссов1131 (Для сравнения, напряжённость магнитного поля вблизи поверхности Солнца равна всего (1—2)10-4 Тл.) Оказалось правильным и предположение, что внутри Крабовидной туманности существует нейтронная звезда. Но она была обнаружена не по описанным выше колебаниям, а путём регистрации эффектов, связанных с её вращением, и произошло это совершенно неожиданно.
1131 1 Гс(гаусс)=1•10-4 Тл. Прим, ред.,
В 1968 г. Джослин Белл, аспирантка Маллардовской радиоастрономической обсерватории в Кавендишской лаборатории Кембриджского университета сделала необычайное открытие. В процессе работы над проблемой межпланетных мерцаний она заметила необычайно регулярные импульсы излучения, приходившие из определённой точки на небе. Период повторения импульсов составлял приблизительно 1,3 с.
Импульсы столь малой длительности очень необычны для астрономического источника. Ещё более странным было то, что периодичность импульсов сохранялась с высокой точностью. В результате измерений удалось установить период пульсаций
Т = 1,3373011512с.