Многие из работ этих авторов или подразумевают, или явно говорят о наступлении сингулярности, когда развитие искусственного суперинтеллекта достигнет такого уровня, что превратится в беспрецедентный неконтролируемый процесс. Подразумевается, что искусственный интеллект не только превзойдет человеческие возможности (вообразимые), но также приблизится по скорости обработки информации к мгновенной скорости физических изменений. Очевидно, что подобные достижения кардинальным образом изменят нашу цивилизацию. Адамс предсказывал (как он понимал ее, то есть исключая вычислительные измерения) наступление сингулярности в период между 1921 и 2025 годами (Adams, 1920). Корен (Coren, 1998) откладывал ее до 2140 года, а последние прогнозы Курцвейла, касающиеся момента, когда машины, работающие с помощью искусственного интеллекта, возьмут верх над людьми, относятся к 2045 году (Galleon and Reedy, 2017). Пока мы (как утверждают многие из этих авторов) неумолимо движемся к этой фантастической ситуации, сторонники ускоренного, то есть гиперболического, роста приводят другие его примеры, разворачивающиеся на наших глазах. Среди них чаще всего называют способность человечества обеспечивать продовольствием растущее население, использовать еще более мощные способы преобразования энергии или путешествовать на еще более высоких скоростях. Это отображается в виде последовательности логистических кривых, феномена, хорошо описанного Дереком Джоном де Соллой Прайсом (Derek J. de Solla Price, 1963, 21):
Каждое новое осознанное ограничение вызывает восстановительную реакцию… Если реакция успешна, ее ценность обычно настолько трансформирует измеряемое явление, что оно обретает вторую жизнь и поднимается с новой силой, пока наконец не встретит свою гибель. Поэтому встречаются два варианта традиционной логистической кривой, более частые, чем простая S-образная интегральная кривая распределения. В обоих случаях вариант возникает во время перегиба, предположительно в тот момент, когда лишения, связанные с потерей экспоненциального роста, становятся невыносимыми. Если небольшое изменение определения измеряемого явления позволяет считать это явление новым наравне со старым, то новая логистическая кривая, как феникс, возрождается из пепла старой…
Мейер и Валли (Meyer and Vallee, 1975) доказывали, что феномен логистического расширения или ускоренного роста недооценивается и что скорее гиперболический, чем экспоненциальный, рост довольно распространен, если рассматривать технический прогресс в долгосрочном плане. Их примеры гиперболического роста включают как число людей, которые могут прокормиться с участка земли, так и рост максимальной мощности первичных двигателей, скорости путешествий и максимальной эффективности методов преобразования энергии. Историческая траектория роста отдельных явлений описывается S-образными кривыми (логистическими или другими, с характерными для них асимптотами[10]
), но огибающая кривая последовательных приростов делает всю последовательность роста временно гиперболической. Как и Прайс, Мейер и Валли (Meyer and Vallee, 1975, 295) рассматривали этот процесс передачи эстафеты как автоматическую последовательность: «как только машина достигает потолка производительности, другая, с качественно отличающейся технологией, подхватывает эстафету у предыдущей и превосходит ее предельный результат, в результате чего создается эффект поддержания ускорения количественной переменной».Однако при более пристальном взгляде становится понятно, что реальность несколько сложнее.
Пищи, добытой первыми собирателями и охотниками, хватало всего на 0,0001 человека с гектара земли. В более благоприятных условиях это число достигало 0,002 человека/га. Переход к производящему сельскому хозяйству поднял плотность на два порядка, до 0,2–0,5 человека с гектара. Первые государства, где практиковалось интенсивное земледелие (Месопотамия, Египет, Китай), подняли этот показатель до 1 человека с гектара. Лучшие традиционные методы агрокультуры XIX века в таких интенсивно возделываемых регионах, как южный Китай, позволяли прокормить более 10 человек с гектара, обеспечивая в среднем гораздо лучшее питание, чем ранее (Smil, 2017a).