Читаем Открытие без границ. Бесконечность в математике полностью

На горизонтальной оси откладывается время, на вертикальной — скорость.

Неравномерное движение описывается, например, уравнением v = 2t. Это означает, что с течением времени скорость возрастает: по прошествии одной секунды она равна 2, по прошествии двух секунд — 4 и т. д. Если в треугольнике АВС сторона АВ представляет пройдённое время, сторона ВС — скорость, то пройденный путь будет равняться площади треугольника АВС. Галилея интересовало применение этого метода к более сложным разновидностям движения, например по параболической траектории, при этом неизбежно требовалось рассматривать кривые линии и площади фигур, ограниченных ими. В своих расчётах он использовал методы, схожие с методами Кеплера. Однако, как вы увидите чуть позже, его ученик Кавальери первым сформулировал рациональный метод для вычисления площадей подобных фигур.

Как мы уже говорили, Галилей неизбежно должен был столкнуться с парадоксами бесконечности и изучить её природу. Именно так он пришёл к парадоксу, который не смог разрешить. С формальной точки зрения эта задача даже не была парадоксом, но она содержала, как вы убедитесь чуть позже, возможное математическое определение бесконечности.

Эта задача-парадокс, которая впервые упоминается в диалогах Галилея в 1638 году, звучит так.

Рассмотрим в качестве исходного множества ряд чисел:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10….

Далее запишем ряд чисел, которые являются их квадратами:

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100….

Очевидно, что оба этих множества бесконечны в том смысле, что мы можем неограниченно добавлять к ним всё новые и новые числа. Кроме того, Галилей заметил, что каждому элементу первого множества соответствует один из элементов второго, но, с другой стороны, кажется очевидным, что в первом множестве больше чисел, чем во втором. Вопрос, который поставил Галилей, заключается в том, какая бесконечность больше, первая или вторая, что ведёт к кажущемуся парадоксу. Он полагал, что либо в чём-то ошибался, либо сравнения, основанные на понятиях «больше», «меньше» и «равно», неприменимы, когда речь идёт о бесконечности.

В этом смысле он был прав, поскольку, как три столетия спустя доказал Георг Кантор,

«арифметика бесконечного отлична от арифметики конечного».

Кавальери

Бонавентура Кавальери (1598–1647), иезуит и преподаватель математики в Болонье, был одним из учеников Галилея и больше всего интересовался вычислениями площадей и объёмов. В 1635 году он опубликовал трактат на эту тему, озаглавленный «Геометрия, развитая новым способом при помощи неделимых непрерывного».

Название говорит само за себя: с одной стороны, Кавальери был сторонником принципа непрерывности, с другой — он был готов считать, что непрерывные объекты можно разделить на элементарные части — монады, подобные атомам, которые далее нельзя разделить на более мелкие части. Он полагал, что прямая состоит из точек, подобно тому, как ожерелье состоит из бусинок, а объёмное тело — из плоскостей, точно так же, как книга — из страниц. Иными словами, неделимыми для прямой являются точки, неделимыми для плоскости — прямые, равноудалённые между собой, неделимыми для твёрдого тела — множество параллельных плоскостей, удалённых друг от друга на равное расстояние. Кавальери понимал, что число этих неделимых должно было быть бесконечным, но деликатно обходил этот вопрос. Более того, свой метод он назвал методом бесконечных, но работу озаглавил «Трактат о неделимых».

* * *

ТЕОРЕМА КАВАЛЬЕРИ

Метод, использованный Кавальери для вычисления объёмов, можно наглядно объяснить так: представьте, что перед вами — две стопки монет или фишек казино одинаковой высоты. Сдвинем монеты во второй стопке так, что она перестанет иметь форму цилиндра. Вычислить объём полученной фигуры будет достаточно сложно. Тем не менее теорема Кавальери гласит, что объём обеих стопок одинаков. В этом примере каждая монета представляет собой неделимое.


По теореме Кавальери, объём обеих стопок монет одинаков, хотя в одном случае они уложены идеально ровно, в другом — нет.

* * *

Принцип Кавальери в современном виде формулируется так: если два тела имеют одинаковую высоту и площади их плоских сечений, взятых на одной высоте, равны, то объёмы этих тел одинаковы.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии