В пределе, когда кривые превращаются в прямую, эта величина исчезает (можно говорить о кривых нулевой кривизны) — в этом и заключается тот самый радикальный переход, о котором мы говорим. Именно по этой причине бесконечность ассоциируется с загадкой творения. В какой-то, недоступный нам, момент времени в определённой точке пространства происходит преобразование, и одна из кривых превращается в прямую. Мы говорим «одна из кривых» не в буквальном смысле, поскольку не существует «последней кривой», так как в этом случае понятие бесконечно малого исчезает и непрерывный процесс сменяется дискретным переходом от последней кривой к прямой. Этот акт творения оказал огромное влияние на научную мысль ввиду сопутствовавших ему философских и религиозных коннотаций и определил границы запретной темы как в философии, так и в религии. Возможно, было бы разумнее говорить о мутации, а не о творении, что ближе к восточной философии, где религиозная мысль теснее связана с философской. В этом смысле более уместно и, возможно, более точно было бы говорить, что кривая мутирует в прямую.
Евдокс (ок. 408–355 гг. до н. э.) наряду с Архимедом (ок. 287–212 гг. до н. э.), Пифагором (570–500 гг. до н. э.) и Евклидом (ок. 325–265 гг. до н. э.) был одним из важнейших представителей греческой математики. В области концептуальной математики он, вне всяких сомнений, намного превосходил всех остальных.
В те времена греческая математика всё ещё переживала удар, вызванный открытием иррациональных чисел, несоизмеримых с целыми. Ясного критерия для сравнения величин разной природы не существовало. Евдокс первым дал этому чёткое определение (определение 5 книги V «Начал» Евклида): «Говорят, что величины находятся в том же отношении: первая ко второй и третья к четвёртой, если равнократные первой и третьей одновременно больше, или одновременно равны, или одновременно меньше равнократных второй и четвёртой каждая каждой при какой бы то ни было кратности, если взять их в соответственном порядке».
В переводе на более современный язык это означает, что два отношения a
/b и c/d равны, если для двух любых натуральных чисел k и k' выполняется условие:если k
∙a < k'∙b, то k∙c < k'∙d;если k
∙a = k'∙b, то k∙c = k'∙d;если k
∙a > k'∙b, то k∙c > k'∙d.Определение кажется тривиальным, но это совершенно не так. Нужно учитывать, что в формулировке Евдокса оно применимо к соотношениям корней чисел и даже к геометрическим фигурам. Например, первые две величины могут обозначать сферы, третья и четвёртая — кубы, построенные на диаметрах этих сфер. Более того, в этих правилах можно увидеть первые наброски будущего определения иррационального числа, данного в XIX веке Рихардом Дедекиндом с помощью метода, который он сам называл методом сечений.
Евдокс
родился около 408 г. до н. э. в Книде — древнегреческом городе в Карии, на территории современной Турции. Он также известен как астроном и географ, совершивший важные открытия в этих науках. Евдокс рассчитал траектории различных звёзд и определил, что солнечный год на 6 часов длиннее, чем принятый тогда календарный, состоявший из 365 дней, и первым разделил небесную сферу на градусы широты и долготы. Он также создал карту звёздного неба и календари, занимался исследованиями по метеорологии и определению смены времён года в долине Нила. Знания астрономии, которые он использовал в своих вычислениях, стали причиной его разногласий со жрецами. Евдокс, будучи противником астрологии, аргументировал свои взгляды не постулатами веры, о которых сложно вести спор, а методологическими положениями: «Когда делают предсказания о жизни человека по его гороскопам, основанным на дате его рождения, этим предсказаниям не стоит придавать значения, поскольку влияние звёзд столь сложно, что на всей Земле нет такого человека, который смог бы его вычислить».