Читаем Открытие без границ. Бесконечность в математике полностью

Единственная проблема заключается в том, что для этого преобразования требуется выполнить поворот, пройти через бесконечность, вернуться в исходное положение и взглянуть на эллипс, как будто ничего не произошло. Как могло случиться, что Кеплер, который считал, что Вселенная конечна, и был противником всех философских и математических теорий, в которых рассматривалась актуальная бесконечность, смог не моргнув глазом описать подобное преобразование? Говоря прямо, Кеплер переходил от одной теории к другой в соответствии с практическими интересами. Разумеется, мы говорим об интересах прикладной математики.

Понятие непрерывного отображения, которое мы схематично описали, впоследствии стало фундаментальным в проективной геометрии. Основная идея заключается в следующем: допустим, что мы обнаружили некоторое геометрическое свойство эллипса. Если мы будем перемещать один из его фокусов так, как мы объяснили выше, это свойство должно сохраниться. При перемещении фокуса эллипс будет становиться более или менее вытянутым. Если преобразование является непрерывным, настанет момент, когда это же свойство будет применимо к окружности, параболе или гиперболе.

Приём непрерывного изменения позднее использовал Блез Паскаль (1623–1662) в случае правильных многоугольников: он преобразовывал, например, шестиугольник в пятиугольник, непрерывно сдвигая две вершины по направлению друг к другу, пока они не совпадут.

Как Кеплер решил проблему, возникающую при использовании этого метода при переходе к бесконечности? Он рассуждал так: прямая бесконечно продолжается с обоих концов, пока они не совпадут в одной точке. Для Кеплера Вселенная была конечной, но очень, очень, очень большой. Достаточно большой, чтобы вместить в себя всё необходимое, и даже больше, но всё-таки конечной.

Как бы то ни было, важно не только то, что Вселенная считалась достаточно большой, чтобы вместить в себя изгибающуюся прямую, концы которой, после того как охватят всё сущее, совпадают (похожей идеи в некотором роде придерживался и Альберт Эйнштейн при формулировке понятия пространства-времени). Более важно, что Кеплер аккуратно подошёл к понятию непрерывного преобразования.

Квадратуры

Термин «квадратура» означает построение квадрата, равного по площади данной фигуре. Задача о вычислении площадей всегда была одной из самых популярных задач прикладной математики. Известны сравнительно простые способы вычисления площадей плоских фигур, ограниченных отрезками прямых. Теорема Пифагора и геометрия Евклида позволили вычислять площади треугольников и всевозможных прямоугольников. Более сложные фигуры можно было разбить на треугольники и прямоугольники. Для этого требовались немалые знания и умения, однако в большинстве случаев эта задача имела решение. Задача существенно усложнялась, если некоторые стороны фигуры были криволинейными — приёмы вычисления их площадей не были известны. Греки производили подобные расчёты, однако им не удалось избавиться от неудобств, вызванных присутствием актуальной бесконечности.

Почему как только фигура перестаёт быть прямолинейной, в расчётах её площади начинает фигурировать бесконечность и возникают связанные с этим проблемы?

Причина в том, что кривая линия представляется как бесконечная последовательность отрезков прямой, или, что равносильно, прямая представляется как результат аппроксимации незамкнутыми кривыми, как показано на рисунке.



По мере спрямления кривых расстояние между ними и прямой уменьшается, особенно в окрестности точки Р. На бесконечности прямая и кривая совпадают.


Представим себе прямую, произвольную точку Р на этой прямой и ряд кривых, касающихся прямой в точке Р, кривизна которых постепенно уменьшается, и они всё больше приближаются к прямой. Очевидно, что сколько бы кривых, касающихся прямой в точке Р, мы ни рисовали, ни одна из них не будет совпадать с исходной прямой. Можно представить, что это всё-таки произошло, и бесконечные кривые в итоге совпали с прямой. Потенциально это возможно, но «актуально» (здесь мы делаем отсылку к актуальной бесконечности) мы не располагаем каким-либо чётким методом для реализации этого. Вновь возникает вопрос о переходе к бесконечности как к чему-то конкретному и вызванные им радикальные изменения. Кривые, которые всё больше приближаются к прямой, обладают общим свойством: для всех них можно определить величину, которая будет числовой характеристикой их кривизны.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии