Читаем Открытие без границ. Бесконечность в математике полностью

В очереди, например у входа в кинотеатр, люди собираются у дверей, где расстояние между ними будет минимальным. По мере отдаления от входа расстояние между людьми увеличивается.


Степень скопления людей можно определить, выбрав в качестве единицы измерения конкретное расстояние, например 50 см. Если в 50 см от входа находятся люди, это будет соответствовать определённой степени скопления. В зависимости от величины этой единицы измерения число людей будет изменяться. Аналогично можно измерить степень скопления людей, оценив расстояние между ними.

Здесь возникает первый интересный вопрос: когда мы видим скопление людей, логично предположить, что они собрались по какой-то причине, то есть это скопление возникает вокруг определённого места, где происходит что-то важное. Когда мы видим на дороге скопление муравьёв, то сразу же понимаем, что где-то поблизости находится еда или вход в муравейник. Ещё один пример — скопление машин на автомагистрали, которое служит признаком того, что поблизости находится пункт оплаты проезда или произошла авария. Эти примеры помогут нам понять одно из самых интересных открытий в истории математики. Оно касается существования определённых чисел, которые в течение веков скрывались в мире бесконечно малых.

В предыдущих примерах речь шла о дискретных множествах. Рассмотрим непрерывные величины, так как они допускают возможность бесконечного деления.

Оставим скопления людей и автомашин и рассмотрим возможные множества точек на прямой. Допустим, что дана последовательность точек а1, a2, а3аn…, которые обладают одним свойством: соседние члены последовательности располагаются всё ближе и ближе друг к другу. Очевидно, что они скапливаются вокруг некоторой точки — обозначим её P. Допустим, что выбранной нами основной мерой длины является отрезок длиной d. Если мы поместим один конец этого отрезка в точку P, то увидим, что некоторые точки последовательности окажутся внутри этого отрезка длиной d.



Более того, мы сможем найти точку аn, после которой все точки будут располагаться внутри отрезка d. Если мы уменьшим длину отрезка и сделаем её равной d' d, то все точки, начиная с более удалённой, аm, будут располагаться внутри этого нового отрезка. Именно такое значение имеет эпсилон в математическом анализе.

Мы можем гарантировать, что для любой величины d всегда найдётся такое n, начиная с которого все элементы последовательности будут находиться внутри отрезка d. В этом случае говорят, что последовательность сходится в точке P. Это означает следующее: во-первых, эта последовательность бесконечна, во-вторых, расстояние между точкой и произвольным членом последовательности может быть сколь угодно малым.

Когда мы работаем с дискретными множествами, всё изложенное выше практически неприменимо. Рассмотрим последовательность чисел 100, 50, 25, 12, 6, 3, 1 (можно представить эту последовательность как очередь из семи чисел у входа, которым, например, является ноль). Очевидно, что разница между произвольным членом последовательности и нулём постепенно уменьшается, равно как и разница между двумя соседними членами последовательности. Например, между 100 и 50 находится 49 чисел, между 6 и 3 — всего два. Тем не менее нельзя сказать, что члены последовательности скапливаются в окрестности точки 0. Очевидно, что если мы возьмём отрезок длиной 1/2 и поместим один из его концов в точку 0, на этом отрезке не будет находиться ни один член последовательности. А если мы рассмотрим последовательность



то вблизи нуля всегда будет находиться какой-либо её член, сколь бы малым ни было расстояние до нуля.

На языке математики эти расстояния называются окрестностями. Окрестность подобна скобкам, в которые заключена точка P. Основная идея заключается в том, что сколь малыми ни были бы эти скобки (то есть радиус окрестности), в них всегда будут находиться элементы последовательности. В языке эпсилон-дельта основную роль играет соотношение между двумя числами: шириной скобок (радиусом окрестности, который обычно обозначают ε — эпсилон) и числом n, определяющим элемент аn, начиная с которого все элементы последовательности будут располагаться внутри заданной окрестности. На языке математики это звучит так: «Для любого эпсилон существует n, такое что…»

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии