Читаем Открытие без границ. Бесконечность в математике полностью

Именно так определяется понятие бесконечного деления, очень близкое к понятию предела. Когда в одном из парадоксов Зенона интервал делится пополам бесконечное число раз, мы формируем последовательность, подобную описанной в предыдущем примере. Теперь мы можем воспользоваться строгим определением перехода к пределу и подтвердить, что последним членом последовательности будет 0. Это не помогает разрешить парадокс, так как ситуация, по сути, не изменилась: точки образуют бесконечную последовательность и скапливаются вблизи нуля, и мы считаем, что существует последняя точка последовательности, 0, но в действительности 0 не является членом этой последовательности. Это утверждение не является оправданным, но чётко определено на языке математики. Как говорил Бертран Рассел, «математика может быть определена как доктрина, в которой мы никогда не знаем ни о чём говорим, ни того, верно ли то, что мы говорим».

В действительности Коши в своём определении предела использовал не точки, которые скапливаются вокруг некоторой данной точки, а точки, которые скапливаются рядом друг с другом. Иными словами, скопление точек, которое рассматривал Коши, подобно скоплениям автомобилей на разных участках дороги, вызванным множеством аварий в разных местах. Ситуация значительно осложняется тем, что если мы рассматриваем исключительно рациональные числа, то прямая, на которой они располагаются, не будет заполнена — на ней останутся промежутки. Например: дана последовательность точек (теперь мы связываем точки на прямой с рациональными числами), которые скапливаются всё плотнее и плотнее. Эту ситуацию можно чётко определить на языке математики, что сделал Коши. Однако проблема заключается в том, что эти точки могут скапливаться вокруг пустого места на прямой, точнее вокруг точки, которой не соответствует никакое рациональное число.

Так происходит, например, в случае с последовательностью



о которой мы говорили в главе 2 и которая сходится к числу √2, а оно не является рациональным. Разумеется, мы можем построить прямоугольный треугольник, гипотенуза которого будет равна √2, но так мы определим это число геометрически, а во времена Коши математики пытались дать определение числам чисто арифметическими или аналитическими методами. Рациональные числа, по сути, вообще не были определены как числа, пока Дедекинд и, позднее, Кантор не сформулировали для них точной дефиниции. Последний сделал не только это, но и устранил промежутки на числовой прямой, которых в действительности существует бесконечное множество, так как иррациональных чисел, равно как и рациональных, бесконечно много.

Однако Кантор заслуживает отдельной главы, ведь он не только заполнил числовую прямую, устранив эти промежутки, но и первый встретился с бесконечностью лицом к лицу.

Глава 5. Рай Кантора

Возможно, было бы небольшим преувеличением заявить, что открытия Кантора стали поворотным моментом в истории всей математики, хотя есть и те, кто придерживается именно этой точки зрения. Однако, без сомнений, его достижения ознаменовали поворотный момент в изучении бесконечности.

Ряды Фурье

Жан-Батист Жозеф Фурье (1768–1830) был математиком-провидцем, он вошёл в число пионеров нового раздела математики — математического анализа, и создал одну из наиболее широко используемых теорий в истории прикладной математики.

Среди его работ особенно выделяется «Аналитическая теория тепла» (возможно, важнейшая из опубликованных им работ), в которой основное внимание уделялось теплопроводности. Этот труд не только имеет исключительную научную ценность, но и стал первым в истории трудом по математической физике.

Разложение функции в ряд заключается в представлении произвольной функции в виде бесконечной суммы других функций. Преимущество этого приёма в том, что с функциями, составляющими бесконечную сумму, работать проще, чем с исходной функцией. Ряды Фурье не были первым примером разложения функции в ряд — в то время уже достаточно часто использовалось разложение в степенной ряд Тейлора. Основное требование при разложении в ряд Тейлора звучало так: поведение рассматриваемой функции должно быть полностью определено на небольшом интервале.

Разложение в ряд Тейлора возможно для множества функций, но имеет один недостаток: оно может применяться исключительно локально, то есть позволяет узнать поведение функции в небольшой окрестности, но никак не определить её поведение в целом. Для решения этой задачи Фурье рассмотрел разложение функции на простые составляющие, как правило, синусоидальные функции. Волны, на которые раскладывались функции при преобразованиях Фурье, получили название гармонических колебаний, а изучавший их новый раздел математики был назван гармоническим анализом.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии