Читаем Открытие без границ полностью

Одно из наиболее удачных определений, в котором не используются синонимы слова «множество» (по крайней мере, явным образом), принадлежит Бертрану Расселу: «Множество есть совокупность различных элементов, мыслимая как единое целое». Это интересная точка зрения, так как в ней понятие множества определяется как результат мыслительной деятельности, и это означает, что речь идет о фундаментальном понятии.

* * *

СЧЕТ С ПОМОЩЬЮ КАМНЕЙ

Интересно отметить, что человек научился считать раньше, чем появились системы счисления, поэтому, вопреки распространенной точке зрения, можно утверждать, что понятие биективного отображения появилось одновременно с понятием числа или даже раньше. Например, пастуху, который хотел сосчитать число овец в стаде, требовалась сумка с камнями. Когда очередная овца выходила из загона, пастух вынимал из сумки один камень. Вечером, пригнав овец обратно в загон, пастух устанавливал взаимно однозначное соответствие между овцами и камнями. (От латинского слова calculus — «камень» происходит, например, современное слово «калькулятор».)



* * *

Как мы уже говорили, фундаментальным также является понятие подсчета элементов множества. При счете мы в действительности сравниваем элементы двух множеств. Например, если мы хотим узнать, сколько человек находится в помещении (то есть сколько элементов содержит множество людей, находящихся в помещении), мы берем за основу известное множество, образованное натуральными числами 1, 2, 3, …, и присваиваем каждому человеку в помещении порядковый номер без повторений. Закончив подсчет, мы смотрим, какое число мы присвоили последним. Если это число равно, например, 23, мы говорим, что в помещении находится 23 человека. В действительности мы сравнили два множества — множество людей и множество чисел {1, 2, 3, …, 22, 23}, установив так называемое взаимно однозначное соответствие. Взаимно однозначное соответствие можно установить между множествами разной природы, важно лишь, чтобы при этом соблюдались определенные правила. Например, если даны множество заглавных букв {А, F, H, P, V} и множество строчных букв {a, b, с, d, е}, то между ними можно установить следующее отношение:



Каждому элементу первого множества должен соответствовать один и только один элемент второго множества, и наоборот. Это единственное правило, которому должны подчиняться биективные, то есть взаимно однозначные отображения.

На рисунке ниже мы также видим соответствия:



Однако они не удовлетворяют этому правилу.

Таким образом, Кантор определил простейшее понятие подсчета, а также ввел понятие кардинальности множества.

Если мы рассмотрим множества, между которыми можно установить биективное отображение, то увидим, что число элементов в этих множествах одинаково. Но если одно множество состоит из четырех элементов, а другое — из трех, между ними нельзя установить биективное отображение: какой-либо элемент остается без пары или какому-либо элементу будет сопоставлено сразу несколько элементов.

Кантор определил эквивалентность множеств следующим образом: «Кардинальность двух множеств одинакова, если между ними можно установить биективное (взаимно однозначное) отображение». О множествах с одинаковой кардинальностью говорят, что они являются равномощными, то есть имеют одинаковое число элементов.

Таким образом, если дано произвольное множество, например коробка цветных карандашей, которое мы обозначим А, и можно установить взаимно однозначное соответствие между множеством A и множеством = {1, 2, 3, 4, 5, 6}, то говорят, что кардинальность А и одинакова:

|A| = |N| = 6

Может показаться, что мы усложняем очевидное, но это впечатление обманчиво: новый логический аппарат позволил дать четкое определение бесконечному множеству.

Для этого сначала определим, что такое конечное множество. Непустое множество А (иными словами, содержащее как минимум один элемент) является конечным, если для некоторого числа n множество А имеет ту же кардинальность, что и множество {1, 2, 3, …, n}. Следовательно, n будет числом элементов множества A. В противном случае говорят, что множество А бесконечное.

Аналогично: множество А бесконечно, если существует собственное подмножество В множества А, имеющее ту же кардинальность, что и само А. В противном случае множество А является конечным.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука