Читаем Отличная квантовая механика полностью

Предположим, что мы в состоянии выделить единичную частицу света — фотон — из поляризованной волны. Фотон — микроскопический объект, поэтому рассматривать его следует в рамках квантовой механики. Начнем с того, что определим связанное с ним гильбертово пространство. Для начала отметим, что горизонтально поляризованное состояние фотона, которое мы обозначим |H⟩, несовместимо с его вертикально поляризованным состоянием |V⟩: фотон |H⟩ невозможно обнаружить в состоянии |V⟩. То есть если мы приготовим горизонтально поляризованный фотон и прогоним его через поляризующий светоделитель (PBS, polarizing beam splitter) — оптический элемент, описанный в разд. В.2, то данный фотон во всех случаях будет проходить насквозь, а отражаться не будет никогда. Это означает, что состояния |H⟩ и |V⟩ ортогональны.

Мы постулируем, что световая волна, электрическое поле которой задано в виде функции координаты и времени [см. (В.2)]

(с действительными AH,V и ϕH,V), состоит из фотонов в состоянии[7]

Отступление 1.1. Открытие фотона

В 1900 г. Макс Планк объяснил экспериментально наблюдаемый спектр излучения абсолютно черного тела, введя понятие кванта света, который мы сегодня знаем как фотон[8]. Он обнаружил, что хорошее совпадение теории и эксперимента можно получить, если считать, что энергия фотона пропорциональна частоте ω световой волны. Коэффициент пропорциональности ℏ = 1,05457148 × 10−34 получил название постоянной Планка.

В 1905 г. Альберт Эйнштейн еще раз подтвердил обоснованность формулы Планка

E = ℏω,

воспользовавшись ей для количественного объяснения экспериментальных результатов по фотоэлектрическому эффекту (более подробно см. отступление 4.6[9]. Позже, в 1916 г., Эйнштейн сделал вывод, что, поскольку из классической электродинамики[10] известно, что электромагнитный волновой пакет, несущий энергию E, несет также импульс p = E/c, это же соотношение должно выполняться и для фотонов. По формуле Планка он нашел[11] p = ℏω/c. Выразив частоту волны через ее длину, он получил ω = 2πc/λ, а затем записал

p = 2πℏ/λ.

Артур Холли Комптон в 1923 г. использовал результаты Эйнштейна для теоретического объяснения собственных экспериментов, в которых он исследовал рассеяние рентгеновских лучей на свободных электронах[12]. Рассматривая фотоны рентгеновского излучения как частицы высоких энергий, он применил законы сохранения энергии и импульса к столкновению между фотоном и электроном, чтобы рассчитать энергию рассеянных фотонов в зависимости от угла рассеяния. Затем он соотнес эту энергию с длиной волны — и получил теоретическое описание для своих экспериментальных данных. Увиденное им превосходное совпадение тех и других стало служить наглядным доказательством существования фотона.

Интересно отметить, что термина «фотон» в то время не существовало. Его ввел в 1926 г. специалист по физической химии Гильберт Льюис[13].

Например, если AH = AV и ϕH = ϕV = 0, то соответствующая классическая волна выглядит как  т. е. линейно поляризована под углом +45°. Соответственно, состояние (где делитель связан с нормированием) обозначает единичный фотон с линейной поляризацией под +45°. В табл. 1.1 вы можете увидеть еще несколько примеров[14].

Из этого следует, что состояния |H⟩ и |V⟩ образуют в гильбертовом пространстве поляризационных состояний фотона ортонормальный базис — т. е. пространство двумерно. Действительно, прежде всего эти состояния ортогональны и потому линейно независимы (упр. A.17). Кроме того, любая поляризованная классическая волна может быть записана в виде (1.1), так что любое поляризационное состояние фотона тоже может быть записано аналогично (1.2), т. е. как линейная комбинация состояний |H⟩ и |V⟩. Мы будем называть базис {|H⟩,|V⟩} каноническим базисом нашего гильбертова пространства.


Упражнение 1.3. Покажите, что:

a) поляризационные состояния ±45° образуют ортонормальный базис;

b) правое и левое круговые поляризационные состояния образуют ортонормальный базис.


Упражнение 1.4. Разложите |H⟩ и |V⟩ по базисам {|+⟩,|—⟩} и {|R⟩,|L⟩}.


Упражнение 1.5. Разложите |a⟩ = |+30°⟩ и |b⟩ = |–30°⟩ по базисам {|H⟩,|V⟩}, {|+⟩,|—⟩} и {|R⟩,|L⟩}. Найдите скалярное произведение ⟨a|b⟩ во всех трех базисах, используя операцию перемножения матриц. Одинаковые ли получились результаты?

Здесь есть сложный момент, который следует прояснить. Множество углов поляризации линейно поляризованных фотонов — континуум. Но в случае одномерного движения частицы, о котором говорилось в предыдущем разделе, множество позиционных состояний — также континуум. Почему же мы говорим, что одно из этих гильбертовых пространств имеет размерность два, а другое — бесконечность?

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука