Как видите, проблема девяти точек имеет решение. Вместе с тем людям обычно чрезвычайно трудно найти это решение, и многие так его и не находят, как ни стараются. Анализ хода решения объясняет эти трудности. Большинство людей на протяжении всех своих попыток придерживаются убеждения, что проводимые линии должны быть ограничены контуром квадрата, образуемого девятью точками. В поисках решения они не позволяют себе выходить за границы области, занятой точками, и хотя ничто в условии задачи на подобные ограничения не указывает, большинство людей исходят из того, что такое ограничение в условии существует.
Данная задача не может быть решена, если четыре упомянутые линии ограничиваются пределами области, образуемой точками. Иначе говоря, устанавливая для себя ненужное и никем не требуемое ограничение, люди делают проблему неразрешимой. Это классический пример того, как неоптимальное определение проблемы способно уменьшить или, как в этом случае, вообще свести на нет шансы на ее решение. Люди, к сожалению, поступают таким образом очень часто, что и демонстрирует задача с девятью точками. Разумеется, простое знание того, что выходить за границы области можно, само по себе не решает задачу, и она по-прежнему будет представлять сама по себе некоторую сложность. Смысл, однако, заключается в том, что, пока вы не осознаете возможность выхода за границы области при построении линий, проблема остается для вас вовсе неразрешимой. Урок, который следует отсюда извлечь: не нужно накладывать на свое решение ограничения, которые не свойственны самой проблеме и не упоминаются в условии задачи.
Монах желает провести время в занятиях и размышлениях в укромном месте на вершине горы. Он начинает подъем на гору в 7 часов утра и достигает вершины в 5 часов вечера. На протяжении всего подъема монах движется с разной скоростью, а также делает одну остановку, чтобы поесть. Затем он весь вечер проводит в своих занятиях и размышлениях, а на следующий день начинает спуск
Рис. 3.2. Задача о монахе
То, что монах минует определенную точку (высоту) на маршруте в один и тот же час в день подъема и в день спуска, — совершенно непреложный факт. Рисунок с решением показывает, почему это так. Задачу становится гораздо легче осознать, если вместо того, чтобы представлять себе одного и того же монаха, в один день совершающего подъем, а на следующий спускающегося с горы, вы представи-ге себе двух разных монахов, в один и тот же день идущих навстречу друг другу: один — наверх, другой — вниз. Можно предположить, что оба монаха начинают свое движение в одно и то же время, хотя такое требование на деле окапывается необязательным для решения задачи. Заметим, что при переосмыслении задачи спуск монаха на следующий день трансформируется в спуск второго монаха в тот же день, когда первый монах совершает подъем. Такая реконцептуализация не меняет существа задачи, а лишь облегчает достижение ее решения.
Теперь заметим, что, если бы монахов действительно было двое, их пути обязательно бы пересеклись. Точка, в которой пересекаются пути подъема и спуска двух монахов, как раз и будет той точкой, в которой «пересекаются» (во времени) пути, проделанные монахом из условия задачи, при подъеме и спуске. В терминах переформулированной задачи решением будет точка, где встречаются два монаха. Ясно, что они приходят в эту точку в один и тот же час. Таким образом, благодаря переосмыслению задачи стало просто легче понять, как такое может быть, чтобы монах два дня подряд оказался в одно и то же время в одном и гом же месте.
В отличие от задачи с девятью точками, задача монаха разрешима и в своем оригинальном виде. Доказать, что монах два дня подряд оказывается в одно и то же время в одном и том же месте, можно, и не прибегая к реконцеп-іуализации задачи. Однако переопределение проблемы существенно облегчает ее решение, потому что оно проясняет важный элемент решения.