Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) меньше или равно критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т.е.
Если осуществляется проверка значимости базисной регрессии или регрессии с ограничениями (restricted regression), то выдвигается основная гипотеза вида:
Справедливость данной гипотезы проверяется с помощью F-критерия Фишера-Снедекора.
Критическое значение F-критерия Фишера определяется по таблице распределения Фишера-Снедекора в зависимости от уровня значимости
Наблюдаемое значение F-критерия преобразуется к виду:
При проверке выдвинутых гипотез возможны следующие ситуации.
Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) больше критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т. е.
Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) меньше или равно критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т. е.
69. Спецификация переменных
Спецификацией переменных
называется процесс отбора наиболее важных факторных переменных при построении модели регрессии.Если в процессе эконометрического моделирования была осуществлена неправильная спецификация переменных, то это может привести к негативным последствиям, среди которых особо можно выделить два пункта:
1) из модели регрессии могут быть исключены факторные переменные, оказывающие наибольшее влияние на результативную переменную;
2) в модель регрессии могут быть включены факторные переменные, практические не связанные с результативной переменной или оказывающие на неё незначительное воздействие.
Предположим, что на основе собранных данных была построена нормальная модель множественной регрессии вида:
Данную модель можно рассматривать как базисную или ограниченную модель регрессии между исследуемыми переменными.
Тогда неограниченная модель данной регрессионной зависимости будет иметь вид:
где Y – вектор результативных переменных;
Рассмотрим случай исключения факторных переменных, оказывающих наибольшее влияние на результативную переменную, из модели регрессии.
Предположим, что модель регрессии с ограничениями является значимой. Исходя из этого условия, рассчитаем оценку коэффициента , полученную методом наименьших квадратов, в оцениваемой модели регрессии с ограничениями (1):
Подставим в данную формулу вместо
Охарактеризуем полученную оценку коэффициента модели регрессии с ограничениями с точки зрения свойства несмещённости. Для этого рассчитаем математическое ожидание оценки
где
Таким образом, оценка
является смещённой, и устранить эту смещённость невозможно, даже при условии увеличения объёма выборочной совокупности.
Оценка коэффициента модели регрессии с ограничениями (1) будет обладать свойством несмещённости в двух случаях:
1) если коэффициент при фиктивной переменной
2) при условии, что пропущенные переменные будут ортогонально включены в модель:
Рассчитаем ковариацию оценки коэффициента модели регрессии с ограничениями (1):
Матрица ковариаций МНК-оценок принимает такой вид только в том случае, если модель (1) является значимой.
Рассмотрим случай, когда в модель регрессии могут быть включены факторные переменные, практические не связанные с результативной переменной или оказывающие на неё незначительное воздействие.
Предположим, что модель регрессии без ограничений (2) является значимой. Исходя из этого условия, оценим коэффициенты модели регрессии с ограничениями (1).
Представим регрессионную модель с ограничениями (1) в следующем виде:
Пусть
Охарактеризуем полученную оценку коэффициента модели регрессии без ограничений с точки зрения свойства несмещённости. Для этого рассчитаем математическое ожидание оценки
Следовательно, оценка