Обе части временного ряда рассматриваются как самостоятельные выборочные совокупности, подчиняющиеся нормальному закону распределения.
Для каждой из выборок
1) средние арифметические значения:
2) выборочные дисперсии:
При проверке предположения о наличии во временном ряду трендовой компоненты выдвигается основная гипотеза о равенстве генеральных средних для двух образованных выборочных совокупностей:
Альтернативной или обратной является гипотеза о неравенстве генеральных средних для двух образованных выборочных совокупностей:
H0:i/=j.
Основная гипотеза вида
Гипотеза о равенстве дисперсий проверяется с помощью F-критерия Фишера.
Наблюдаемое значение F-критерия сравнивают с критическим значением F-критерия, которое определяется по таблице распределения Фишера-Снедекора.
Критическое значение F-критерия Фишера определяется по таблице распределения Фишера-Снедекора в зависимости от уровня значимости а и двух степеней свободы
Наблюдаемое значение F-критерия при проверке основной гипотезы вида
определяется по формуле:
при условии, что
При проверке выдвинутых гипотез возможны следующие ситуации.
Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) больше критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т. е.
Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) меньше или равно критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т.е.
Гипотеза о равенстве генеральных средних проверяется с помощью t-критерия Стьюдента.
Наблюдаемое значение t-критерия (вычисленное на основе выборочных данных) сравнивают с критическим значением t-критерия, которое определяется по таблице распределения Стьюдента.
Критическое значение t-критерия
Наблюдаемое значение t-критерия при проверке основной гипотезы вида
При проверке гипотез возможны следующие ситуации.
Если наблюдаемое значение t-критерия (вычисленное по выборочным данным) больше критического значения t-критерия (определённого по таблице распределения Стьюдента), т. е.
Если наблюдаемое значение t-критерия (вычисленное по выборочным данным) меньше или равно критического значения t-критерия (определённого по таблице распределения Стьюдента), т.е.
72. Критерий «восходящих и нисходящих» серий. Критерий серий, основанный на медиане выборочной совокупности
При использовании для проверки утверждения о присутствии во временном ряду трендовой компоненты критерия «восходящих и нисходящих» серий, против каждого из уровней временного ряда объёмом
Последовательность из знаков «+» или «-» называется серией. Обозначим общее количество серий данного временного ряда как . Самую длинную серию из плюсов или минусов обозначим как .
Основная гипотеза формулируется как утверждение об отсутствии трендовой компоненты во временном ряду.
Если хотя бы одно из следующих неравенств не выполняется, то основная гипотеза об отсутствии тренда отклоняется.
1)
Гипотеза об отсутствии тренда проверяется при уровне значимости
При использовании для проверки утверждения о присутствии во временном ряду трендовой компоненты критерия серий, основанного на медиане выборочной совокупности, временной ряд объёмом
Медианой
называется наблюдение, которое делит ранжированный временной ряд на две равные части.Если временной ряд содержит нечётное количество наблюдений, то в качестве медианы принимается значение, стоящее в середине данного ряда.
Если временной ряд содержит чётное количество наблюдений, то в качестве медианы берётся среднее арифметическое значение двух наблюдений, находящихся посередине временного ряда.