Критическое значение F-критерия Фишера определяется по таблице распределения Фишера-Снедекора в зависимости от уровня значимости а и двух степеней свободы
Наблюдаемое значение F-критерия рассчитывается по формуле:
где
При проверке выдвинутых гипотез возможны следующие ситуации.
Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) больше критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т. е.
Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) меньше или равно критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т. е.
74. Аналитический вид тренда
Метод аналитического выравнивания с помощью функций времени или кривых роста является основным методом представления тренда в аналитическом виде, используемым в эконометрике. Суть данного метода заключается в аппроксимации временного ряда определённой формой регрессионной кривой. При этом наиболее проблематичным является вопрос о выборе функции тренда.
Выбор выравнивающей кривой может осуществляться на основании заранее заданных критериев, к которым относятся:
1) множественный коэффициент детерминации;
2) сумма квадратов отклонений наблюдаемых значений временного ряда от теоретических значений (рассчитанных с помощью функции тренда).
Методом конечных разностей
называется метод, позволяющий подобрать подходящую форму кривой. Его применение возможно в том случае, если временной ряд содержит равностоящие друг от друга уровни.Конечной разностью первого порядка
(разностным оператором первого порядка) называется разность между соседними уровнями временного ряда:Разностным оператором второго порядка
(конечной разностью второго порядка) называется разность между соседними разностными операторами первого порядка:В общем случае разностным оператором i-го порядка
называется разность между соседними разностными операторами (i-1)-го порядка:Если разностные операторы первого порядка постоянны и равны между собой
а разностные операторы второго порядка равны нулю
то тренд изучаемого временного ряда можно аппроксимировать линейной функцией вида
Если разностные операторы второго порядка постоянны и равны между собой
а разностные операторы третьего порядка равны нулю
то тренд изучаемого временного ряда можно аппроксимировать параболической функцией второго порядка вида
Следовательно, порядок разностных операторов, являющихся постоянными для данного временного ряда, определяет степень уравнения тренда:
Оценки неизвестных коэффициентов уравнения тренда рассчитываются с помощью классического метода наименьших квадратов.
Если тренд временного ряда можно аппроксимировать линейной функцией, то её коэффициенты можно рассчитать с помощью метода моментов. При этом в модель вводится новая переменная времени
Для временного ряда, количество уровней которого является нечётным, переменная
Для временного ряда, количество уровней которого является чётным, числа
Линейная модель регрессии с учётом новой переменной принимает вид:
Оценки неизвестных коэффициентов данной модели рассчитываются из системы нормальных уравнений:
Решением данной системы будут оценки коэффициентов уравнения тренда:
75. Адекватность трендовой модели
Трендовая модель
считается адекватной описываемому процессу, если значения случайной остаточной компонентыПроверка случайности остатков модели осуществляется с помощью критериев исследования временного ряда на предмет наличия в нём трендовой компоненты:
1) критерий, основанный на сравнении средних уровней временного ряда;
2) критерий «восходящих и нисходящих» серий;