3) критерий серий, основанный на медиане выборочной совокупности.
В этом случае вместо исходных уровней временного ряда
Также проверка случайности остатков модели может осуществляться с помощью критерия поворотных точек.
При использовании критерия поворотных точек остаток модели
где
Проверка центрированности остатков временного ряда осуществляется с помощью t-критерия Стьюдента.
Основная гипотеза формулируется как утверждение о центрированности ряда остатков.
Критическое значение t-критерия
Наблюдаемое значение t-критерия рассчитывается по формуле:
где
– среднее арифметическое значение ряда остатков:
При проверке основной гипотезы возможны следующие ситуации.
Если наблюдаемое значение t-критерия (вычисленное по выборочным данным) больше критического значения t-критерия (определённого по таблице распределения Стьюдента), т. е. t
Если наблюдаемое значение t-критерия (вычисленное по выборочным данным) меньше или равно критического значения t-критерия (определённого по таблице распределения Стьюдента), т. е.
Проверка независимости ряда остатков модели осуществляется с целью определения возможной систематической составляющей в составе ряда остатков. Если модель подобрана неудачно, то остатки будут подвержены автокорреляционной зависимости.
Независимость остатков проверяется с помощью критерия Дарбина-Уотсона, связанного с гипотезой о наличии в ряде остатков автокорреляции первого порядка, т. е. о корреляционной зависимости соседних остатков.
Нормальность ряда остатков проверяется с помощью показателей асимметрии и эксцесса (если объём выборочной совокупности не превышает 50 значений). При нормальном распределении показатели асимметрии и эксцесса равны нулю.
На основании выборочных данных вычисляются эмпирические коэффициенты асимметрии и эксцесса по формулам:
Если вычисленные коэффициенты близки к нулю, то можно сделать вывод, что ряд остатков подчиняется нормальному закону распределения.
В дополнение к выборочным коэффициентам асимметрии и эксцесса рассчитывают показатели среднеквадратических отклонений данных коэффициентов по формулам:
Если одновременно выполняются следующие неравенства:
то гипотеза о нормальном характере распределения случайной компоненты принимается. Если хотя бы одно из указанных неравенств нарушается, то гипотеза о нормальном распределении остатков отвергается.
Помимо адекватности выбранной модели, необходимо охарактеризовать её точность. Наиболее простым критерием точности модели является относительная ошибка, рассчитываемая по формуле:
Если относительная ошибка равна менее, чем 13 %, то точность подобранной модели признаётся удовлетворительной.
76. Сезонные и циклические компоненты временного ряда
Для построения адекватной модели временного ряда необходимо охарактеризовать сезонные и циклические компоненты временного ряда. К основным методам моделирования сезонных и циклических колебаний относятся:
1) метод вычисления сезонной компоненты и построение аддитивной или мультипликативной модели временного ряда;
2) метод применения сезонных фиктивных переменных;
3) метод анализа сезонных колебаний с помощью автокорреляционной функции;
4) метод, основанный на использовании одномерных рядов Фурье.
В связи с тем, что моделирование сезонных и циклических колебаний происходит аналогично, применение данных методов мы будем рассматривать на примере моделирования сезонных колебаний.
Аддитивная модель временного ряда стоится в том случае, если амплитуда сезонных колебаний не меняется во времени:
где
– случайный шум.
Мультипликативная модель временного ряда стоится в том случае, если амплитуда сезонных колебаний изменяется во времени:
Предположим, что задача состоит в исследовании временного ряда