Читаем Ответы на экзаменационные билеты по эконометрике полностью

2) модели скользящего среднего;

3) модели авторегрессии скользящего среднего.

Уровень временного ряда, представленного моделью авторегрессии порядка р, можно представить следующим образом:

yt=1yt-1+2yt-2+…+pyt–p+t,

где p – порядок модели авторегрессии;

t – коэффициенты модели авторегрессии, подлежащие оцениванию;

t – белый шум (случайная величина с нулевым математическим ожиданием).

Модель авторегрессии порядка р обозначается как АР(р) или AR(p).

На практике чаще всего используются модели авторегрессии первого, второго, максимум третьего порядков.

Модель авторегрессии первого порядка АР(1) называется “Марковским процессом”, потому что значения переменной y в текущий момент времени t зависят только от значений переменной y в предыдущий момент времени (t–1). Данная модель имеет вид:

yt=yt–1+t.

Для модели АР(1) действует ограничение ||1.

Модель авторегрессии второго порядка АР(2) называется “процессом Юла”. Данная модель имеет вид:

yt=1yt-1+2yt-2+t.

На коэффициенты модели авторегрессии второго порядка накладываются ограничения вида:

1) (1+2)1;

2) (1–2)1;

3) |2|1.

Модели скользящего среднего относятся к простому классу моделей временных рядов с конечным числом параметров, которые можно получить, представив уровень временного ряда как алгебраическую сумму членов ряда белого шума с числом слагаемых q.

Общая модель скользящего среднего порядка q имеет вид:

yt=t–1t–1–2t–2–…–qt–q,

где q – порядок модели скользящего среднего;

t – неизвестные коэффициенты модели, подлежащие оцениванию;

t – белый шум.

Модель скользящего среднего порядка q обозначается как CC(q) или MA(q).

На практике чаще всего используются модели скользящего среднего первого CC(1) и второго порядков CC(2).

Коэффициенты модели скользящего среднего порядка q не обязательно должны в сумме давать единицу и не обязательно должны быть положительными.

Для достижения большей гибкости модели временных рядов при эконометрическом моделировании в неё включают как члены авторегрессии, так и члены скользящего среднего. Подобные модели получили название смешанных моделей авторегрессии скользящего среднего и также относятся к линейным моделям стационарных временных рядов.

Смешанная модель авторегрессии скользящего среднего обозначается как АРСС(p,q) или ARMA(p,q).

Чаще всего на практике используется смешанная модель АРСС(1) с одним параметром авторегрессии p=1 и одним параметром скользящего среднего q=1. Данная модель имеет вид:

yt=yt–1+t–t–1,

где – параметр процесса авторегрессии;

– параметр процесса скользящего среднего;

t – белый шум.

На коэффициенты данной модели накладываются следующие ограничения:

1) ||1 – условие, обеспечивающее стационарность смешанной модели;

2) ||‹1 – условие, обеспечивающее обратимость смешанной модели.

Свойство обратимости смешанной модели АРСС(p,q) означает, что модель скользящего среднего можно обратить или переписать в виде модели авторегрессии неограниченного порядка, и наоборот.

83. Модель авторегрессии и проинтегрированного скользящего среднего

Модель авторегрессии и проинтегрированного скользящего среднего (АРПСС) была предложена американскими учёными Боксом и Дженкинсом в 1976 г. как один из методов оценки неизвестных параметров и прогнозирования временных рядов.

Моделью авторегрессиии проинтегрированного скользящего среднего называется модель, которая применяется при моделировании нестационарных временных рядов.

Нестационарный временной ряд характеризуется непостоянными математическим ожиданием, дисперсией, автоковариацией и автокорреляцией.

В основе модели авторегрессии и проинтегрированного скользящего среднего лежат два процесса:

1) процесс авторегрессии;

2) процесс скользящего среднего.

Процесс авторегрессии может быть представлен в виде:

xt=a+1xt-1+2xt-2+…+t,

где a – свободный член модели, являющийся константой;

1 2…— параметры модели авторегрессии;

– случайное воздействие (ошибка модели).

Каждое наблюдение в модели авторегрессии представляет собой сумму случайной компоненты и линейной комбинации предыдущих наблюдений.

Процесс скользящего среднего может быть представлен в виде:

xt=+t–1t–1–2t–2–…

где – свободный член модели, являющийся константой;

1 2… – параметры модели скользящего среднего;

– случайное воздействие (ошибка модели).

Текущее наблюдение в модели скользящего среднего представляет собой сумму случайной компоненты в данный момент времени и линейной комбинации случайных воздействий в предыдущие моменты времени.

Следовательно, в общем виде модель авторегрессии и проинтегрированного скользящего среднего описывается формулой:

где С – свободный член модели, являющийся константой;

t – некомпенсированный моделью случайный остаток.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже