В обозначениях Бокса и Дженкинса модель авторегрессии и проинтегрированного скользящего среднего записывается как
Для рядов с периодической сезонной компонентой применяется модель авторегрессии и проинтегрированного скользящего среднего с сезонностью, которая в обозначениях Бокса и Дженкинса записывается как
Моделирование нестационарных временных рядов с помощью модели авторегрессии и проинтегрированного скользящего среднего осуществляется в три этапа:
1) проверка временного ряда на стационарность;
2) идентификация порядка модели и оценивание неизвестных параметров;
3) прогноз.
Применение модели АРПСС предполагает обязательную стационарность исследуемого ряда, поэтому на первом этапе данное предположение проверяется с помощью автокорреляционной и частной автокорреляционной функций ряда остатков. Остатки представляют собой разности наблюдаемого временного ряда и значений, вычисленных с помощью модели.
Устранить нестационарность временного ряда можно с помощью метода разностных операторов.
Разностным оператором первого порядка называется замена исходного уровня временного ряда разностями первого порядка:
Разностные операторы первого порядка позволяет исключить линейные тренды.
Разностные операторы второго порядка позволяют исключить параболические тренды.
Сезонные разностные операторы предназначены для исключения 12-ти или 4-х периодичной сезонности:
Если модель содержит и трендовую, и сезонную компоненты, то необходимо применять оба оператора.
На втором этапе необходимо решить, сколько параметров авторегрессии и скользящего среднего должно войти в модель.
В процессе оценивания порядка модели авторегрессии и проинтегрированного скользящего среднего применяется квазиньютоновский алгоритм максимизации правдоподобия наблюдения значений ряда по значениям параметров. При этом минимизируется (условная) сумма квадратов остатков модели. Для оценки значимости параметров используется t-статистика Стьюдента. Если значения вычисляемой t-статистики не значимы, соответствующие параметры в большинстве случаев удаляются из модели без ущерба подгонки.
Полученные оценки параметров используются на последнем этапе для того, чтобы вычислить новые значения ряда и построить доверительный интервал для прогноза.
Оценкой точности прогноза, сделанного на основе модели авторегрессии и проинтегрированного скользящего среднего является среднеквадратическая ошибка (mean squar
Чем меньше данный показатель, тем точнее прогноз.
Модель авторегрессии и проинтегрированного скользящего среднего считается адекватной исходным данным, если остатки модели являются некоррелированными нормально распределёнными случайными величинами.
84. Показатели качества модели авторегрессии и проинтегрированного скользящего среднего
Основными показателями качества модели авторегрессии и проинтегрированного скользящего среднего являются критерий Акайка и байесовский критерий Шварца. Данные критерии аналогичны критерию максимума скорректированного множественного коэффициента детерминации
Информационный критерий Акайка (Akaike information criterion – AIC) используется для выбора наилучшей модели для временного ряда
Предположим, что с помощью метода максимального правдоподобия была получена оценка
вектора неизвестных параметров модели . Обозначим через
максимальное значение логарифмической функции правдоподобия эконометрической модели.
Тогда критерий Акайка можно будет представить в виде:
где
Для линейной или нелинейной модели регрессии, включающей только одно уравнение, критерий Акайка может быть преобразован к виду:
где n – объём выборочной совокупности;
– оценка максимального правдоподобия дисперсии остатков
Оба варианта критерия Акайка дают одинаковый результат, но в первом случае выбирается модель с наибольшим значением критерия, а во втором случае – с наименьшим значением критерия.
Байесовский критерий Шварца (Schwarz Bayesian criterion – SBC) также используется для выбора наилучшей модели временного ряда из некоторого множества моделей.
Байесовский критерий Шварца для временных рядов можно представить в виде:
Байесовский критерий Шварца для моделей регрессии можно представить в виде:
По первому варианту расчёта критерия Байесовского критерий Шварца