В состав системы эконометрических уравнений входят множество зависимых или эндогенных переменных и множество предопределённых переменных (лаговые и текущие независимые переменные, а также лаговые эндогенные переменные).
Системы эконометрических уравнений используются для объяснения текущих значений эндогенных переменных в зависимости от значений предопределённых переменных.
Системы эконометрических уравнений, которые используются в эконометрическом моделировании, подразделяются на три типа.
1. Система независимых эконометрических уравнений вида:
Данная система характеризуется тем, что каждая эндогенная переменная y является функцией от одних и тех же переменных x;
2. Система рекурсивных эконометрических уравнений вида:
Данная система характеризуется тем, что в каждом последующем уравнении эндогенная переменная выступает в качестве экзогенной переменной;
3. Система взаимозависимых эконометрических уравнений вида:
Данная система характеризуется тем, что эндогенные переменные в одних уравнениях входят в левую часть (т. е. являются результативными переменными), а в других уравнениях – в правую часть (т. е. являются факторными переменными).
В системе взаимозависимых уравнений значения результативных и факторных переменных формируются одновременно под влиянием внешних факторов. Поэтому данная система также называется системой одновременных или совместных уравнений.
В системах независимых и рекурсивных уравнений каждое уравнение может рассматриваться самостоятельно, поэтому оценки неизвестных коэффициентов этих уравнений можно рассчитать с помощью классического метода наименьших квадратов.
В системе одновременных уравнений каждое уравнение не может рассматриваться как самостоятельная часть системы, поэтому оценки неизвестных коэффициентов данных уравнений нельзя определить с помощью классического метода наименьших квадратов, т. к. нарушаются три основных условия применения этого метода:
а) между переменными системы уравнений существует одновременная зависимость, т. е. в первом уравнении системы
б) наличие проблема мультиколлинеарности, т. е. во втором уравнении системы
в) случайные ошибки уравнения коррелируют с результативными переменными.
Следовательно, если неизвестные коэффициенты системы одновременных уравнений оценивать с помощью классического метода наименьших квадратов, то в результате мы получим смещённые и несостоятельные оценки.
Основной моделью системы одновременных уравнений является модель одновременного формирования спроса
1) уравнение предложения:
2) уравнение спроса:
3) тождество спроса, справедливое при условии, что рынок находится в состоянии равновесия:
где
88. Структурная и приведённая формы системы одновременных уравнений. Идентификация модели
Структурными уравнениями
называются уравнения, из которых состоит исходная система одновременных уравнений. В данном случае система имеет структурную форму.Структурная форма системы одновременных уравнений непосредственно характеризует реальный экономический процесс.
Структурными коэффициентами
или параметрами называются коэффициенты уравнений структурной формы системы одновременных уравнений.Структурные уравнения могут быть представлены либо поведенческими уравнениями, либо уравнениями-тождествами.
Поведенческие уравнения
характеризуют все типы взаимодействия между эндогенными и экзогенными переменными в структурной форме системы одновременных уравнений.В поведенческих уравнениях значения параметров являются неизвестными и подлежат оцениванию.
Примером поведенческого уравнения являются уравнение спроса или уравнение предложения в модели спроса-предложения:
Тождествами
называют равенства, которые выполняются во всех случаях.Отличительной чертой тождеств является то, что их вид и значения параметров известны, и они не содержат случайной компоненты.
Примером уравнения-тождества является тождество равновесия в модели спроса-предложения:
Для того чтобы определить неизвестные структурные коэффициенты системы одновременных уравнений необходимо перейти к приведённой форме системы.