Читаем Ответы на экзаменационные билеты по эконометрике полностью

Долгосрочный мультипликатор отражает общее абсолютное изменение результативной переменной у в долгосрочном периоде.

Если для модели авторегрессии выполняется условие ||1, то при наличии бесконечного лага будет справедливым равенство:

В нормальной линейной модели регрессии все факторные переменные не зависят от случайной ошибки модели. Данное условие для моделей авторегрессии нарушается, потому что переменная yt-1 частично зависит от случайной ошибки модели t. Следовательно, при оценке неизвестных коэффициентов традиционным методом наименьших квадратов ы получим смещённую оценку коэффициента при переменной yt–1.

При определении оценок неизвестных коэффициентов модели авторегрессии используется метод инструментальных переменных (IV – Instrumental variables).

Суть метода инструментальных переменных заключается в том, что переменная yt–1, для которой нарушается предпосылка применения метода наименьших квадратов, заменяется на новую переменную z, удовлетворяющую двум требованиям:

1) данная переменная должна тесно коррелировать с переменной yt–1: cov(yt–1,z)/=0;

2) данная переменная не должна коррелировать со случайной ошибкой модели t: cov(z,)=0.

Предположим, что на основании собранных данных была построена модель авторегрессии вида:

yt=0+1xt+1yt–1+t.

Рассчитаем оценки неизвестных коэффициентов данной модели с помощью метода инструментальных переменных.

В данной модели авторегрессии переменная yt коррелирует с переменной xt, следовательно, переменная yt–1 зависит от переменной xt–1. Охарактеризуем данную корреляционную зависимость с помощью парной модели регрессии вида:

yt–1=k0+k1xt–1+ut,

где k0 ,k1 – неизвестные коэффициенты модели регрессии;

ut – случайная ошибка модели регрессии.

Обозначим выражение k0+k1xt–1 через переменную zt–1. Тогда модель регрессии для переменной yt–1 примет вид:

yt–1= zt–1+ut.

Новая переменная zt–1  удовлетворяет свойствам, предъявляемым к инструментальным переменным:

1) она тесно коррелирует с переменной yt–1: cov(zt–1,yt–1)/=0;

2) она коррелирует со случайной ошибкой исходной модели авторегрессии tcov(t, zt–1).

Таким образом, исходная модель авторегрессии может быть представлена следующим образом:

yt=0+1xt+1(k0+k1xt–1+ut)+t= 0+1xt+1 zt–1+t,

где t= 1 ut+ t.

На следующем этапе оценки неизвестных коэффициентов преобразованной модели рассчитываются с помощью традиционного метода наименьших квадратов. Эти оценки будут являться оценками неизвестных коэффициентов исходной модели авторегрессии.

96. Модели с распределённым лагом

Моделью с распределённым лагом называется динамическая эконометрическая модель, в которую включены не только текущие, но и лаговые значения факторных переменных.

С помощью модели с распределённым лагом можно охарактеризовать влияние изменения факторной переменной х на дальнейшее изменение результативной переменной у, т. е. изменение х в момент времени t будет оказывать влияние на значение переменной у в течение L следующих моментов времени.

Пример модели с распределённым лагом:

yt=0+1xt+2xt–1+…+Lxt–L+t.

Краткосрочным мультипликатором называется коэффициент 1 модели с распределённым лагом

Краткосрочный мультипликатор характеризует среднее абсолютное изменение переменной yt при изменении переменной xt на единицу своего измерения в конкретный момент времени t при элиминировании влияния лаговых значений переменной х.

Коэффициент 2 модели с распределённым лагом характеризует среднее абсолютное изменение переменной yt в результате изменения переменной х на единицу своего измерения в момент времени t–1.

Промежуточным мультипликатором называется сумма коэффициентов 1и 2 модели с распределённым лагом.

Промежуточный мультипликатор характеризует совокупное влияние факторной переменной х на переменную у в момент времени (t+1). Таким образом, изменение переменной х на единицу в момент времени t вызывает изменение переменной у на 1 единиц в момент времени t и изменение переменной у на 2 в момент времени (t+1).

Средним лагом называется средний период времени, в течение которого будет происходить изменение результативной переменной у под влиянием изменения факторной переменной х в момент t:

Если величина среднего лага небольшая, то переменная у достаточно быстро реагирует на изменение факторной переменной х.

Если величина среднего лага большая, то факторная переменная х медленно воздействует на результативную переменную у.

Медианным лагом называется период времени, в течение которого с момента начала изменения факторной переменной х будет реализована половина её общего воздействия на результативную переменную у.

Оценки неизвестных коэффициентов модели с распределённым лагом традиционным методом наименьших квадратов рассчитать нельзя по трём причинами:

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже