1) нарушение первого условия нормальной линейной модели регрессии, т. е. наличие корреляции между текущими и лаговыми значениями факторной переменной;
2) при большой величине лага L уменьшается количество наблюдений, по которым строится модель регрессии и увеличивается число факторных переменных (
3) наличие проблема автокорреляции остатков.
Данные причины в итоге ведут к нестабильности оценок коэффициентов регрессии, вычисленных с помощью метода наименьших квадратов.
Оценки неизвестных коэффициентов моделей с распределённым лагом рассчитывают с помощью специальных методов, чаще всего с использованием метода Алмон и метода Койка.
97. Метод Алмон
Для оценки неизвестных коэффициентов модели с распределённым лагом применяется метод Алмон или лаги Алмон.
Данный метод можно применять к моделям, которые характеризуются полиномиальной структурой лага и конечной величиной лага
Структура лага определяется графическим методом при отражении зависимости параметров при факторных переменных от величины лага.
Алгоритм метода Алмон реализуется в несколько этапов:
Суть метода Алмон состоит в следующем:
1) зависимость коэффициентов при факторных переменных
а) первого порядка i=c0+c1*i
б) второго порядка
в) третьего порядка
г) в общем случае полиномиальной функцией порядка P:
Алмон доказал, рассчитать оценки коэффициентов
намного проще, чем найти оценки непосредственно коэффициентов
Подставим полученные выражения для коэффициентов
3) в полученном выражении перегруппируем слагаемые:
Обозначим слагаемые в скобках при коэффициентах
как новые переменные:
С учётом новых переменных модель примет вид:
4) оценки неизвестных коэффициентов модели (2) можно рассчитать с помощью традиционного метода наименьших квадратов. Далее на основе полученных оценок коэффициентов
5) найдём оценки коэффициентов
модели (1), используя соотношения, полученные на первом шаге.
К основным недостаткам метода Алмон относятся:
1) необходимо заранее знать величину максимального временного лага L, однако на практике это невозможно. Определить величину лага
2) порядок полиномиальной функции Р также заранее неизвестен. При выборе порядка полинома обычно исходят из того, что на практике не используются полиномы более второго порядка, а выбранная степень полинома должна быть на единицу меньше числа экстремумов в структуре лага;
3) если между факторные переменные коррелируют друг с другом, то новые переменные
которые являются линейной комбинацией факторных переменных
Основным преимуществом метода Алмон является то, что данный метод является универсальным и может быть использован при моделировании процессов, которые характеризуются различными структурами лагов.
98. Нелинейный метод наименьших квадратов. Метод Койка
Если модель с распределенным лагом характеризуется бесконечной величиной максимального лага L, то для оценивания неизвестных параметров данной модели применяются нелинейный метод наименьших квадратов и метод Койка. При этом исходят из предположения о геометрической структуре лага, т. е. влияние лаговых значений факторной переменной на результативную переменную уменьшается с увеличением величины лага в геометрической прогрессии.