Читаем Ответы на экзаменационные билеты по эконометрике полностью

Случайная величина Х называется непрерывной, если она может принимать любое значение из конечного или бесконечного интервала. В качестве примера случайного временного ряда с непрерывными уровнями может служить временной ряд, отражающий значения температуры воздуха, зарегистрированные с определённой периодичностью.

Стохастическим процессом называется процесс, который развивается во времени в соответствии с законами теории вероятностей.

К стохастическим процессам относится класс стационарных процессов.

Стохастический процесс называется стационарным, если его основные свойства остаются неизменными во времени.

Предположим, что исследуется временной ряд Х. Обозначим через xt уровень данного временного ряда. Тогда стационарный процесс будет характеризоваться следующими четырьмя свойствами:

1) математическое ожидание стационарного ряда E(yt) является постоянным, т. е. среднее значение временного ряда, вокруг которого изменяются уровни, является величиной постоянной:

2) дисперсия стационарного ряда является постоянной. Она характеризует вариацию уровней временного ряда относительно его среднего значения

3) автоковариация стационарного ряда с лагом l является постоянной, т. е. ковариация между значениями xt и xt+l, отделёнными интервалом в l единиц времени, определяется по формуле:

для стационарных рядов автоковариация зависит только от величины лага l, поэтому справедливо равенство вида:

4) коэффициенты автокорреляция стационарного ряда с лагом l являются постоянными. Следовательно, автокорреляция является нормированной автоковариацией, т. к. для стационарного процесса G2(y)=const:

Таким образом, коэффициент автокорреляции порядка l определяется по формуле:

Нестационарным временным рядом называется ряд, который не удовлетворяет вышеперечисленным свойствам.

Случайный процесс, называемый белым шумом, является частным случаем стационарных временных рядов.

Белым шумом называется случайная последовательность значений y1, y2,…,yN, если её математическое ожидание равно нулю, т.е. E(Yt)=0, где

её элементы являются некоррелированными (независимыми друг от друга) одинаково распределёнными величинами, и дисперсия является постоянной величиной D(Yt)=G2=const.

Белый шум – это теоретический процесс, который реально не существует, однако он представляет собой очень важную математическую модель, которая используется при решении множества практических задач.

82. Линейные модели стационарного временного ряда

Стохастический временной ряд называется стационарным, если его математическое ожидание, дисперсия, автоковариация и автокорреляция являются неизменными во времени.

К основным линейным моделям стационарных временных рядов относятся:

1) модели авторегрессии;

2) модели скользящего среднего;

3) модели авторегрессии скользящего среднего.

Уровень временного ряда, представленного моделью авторегрессии порядка р, можно представить следующим образом:

yt=δ1yt-1+δ2yt-2+…+δpyt–p+νt,

где p – порядок модели авторегрессии;

δt – коэффициенты модели авторегрессии, подлежащие оцениванию;

νt – белый шум (случайная величина с нулевым математическим ожиданием).

Модель авторегрессии порядка р обозначается как АР(р) или AR(p).

На практике чаще всего используются модели авторегрессии первого, второго, максимум третьего порядков.

Модель авторегрессии первого порядка АР(1) называется “Марковским процессом”, потому что значения переменной y в текущий момент времени t зависят только от значений переменной y в предыдущий момент времени (t–1). Данная модель имеет вид:

yt=δyt–1+νt.

Для модели АР(1) действует ограничение |δ|<1.

Модель авторегрессии второго порядка АР(2) называется “процессом Юла”. Данная модель имеет вид:

yt=δ1yt-1+δ2yt-2+νt.

На коэффициенты модели авторегрессии второго порядка накладываются ограничения вида:

1) (δ1+δ2)<1;

2) (δ1–δ2)<1;

3) |δ2|<1.

Модели скользящего среднего относятся к простому классу моделей временных рядов с конечным числом параметров, которые можно получить, представив уровень временного ряда как алгебраическую сумму членов ряда белого шума с числом слагаемых q.

Общая модель скользящего среднего порядка q имеет вид:

yt=νt–φ1νt–1–φ2νt–2–…–φqνt–q,

где q – порядок модели скользящего среднего;

φt – неизвестные коэффициенты модели, подлежащие оцениванию;

νt – белый шум.

Модель скользящего среднего порядка q обозначается как CC(q) или MA(q).

На практике чаще всего используются модели скользящего среднего первого CC(1) и второго порядков CC(2).

Коэффициенты модели скользящего среднего порядка q не обязательно должны в сумме давать единицу и не обязательно должны быть положительными.

Перейти на страницу:

Похожие книги