Для достижения большей гибкости модели временных рядов при эконометрическом моделировании в неё включают как члены авторегрессии, так и члены скользящего среднего. Подобные модели получили название смешанных моделей авторегрессии скользящего среднего и также относятся к линейным моделям стационарных временных рядов.
Смешанная модель авторегрессии скользящего среднего обозначается как
Чаще всего на практике используется смешанная модель АРСС(1) с одним параметром авторегрессии p=1 и одним параметром скользящего среднего
где δ – параметр процесса авторегрессии;
φ – параметр процесса скользящего среднего;
νt – белый шум.
На коэффициенты данной модели накладываются следующие ограничения:
1)
2)
Свойство обратимости смешанной модели АРСС(p,q) означает, что модель скользящего среднего можно обратить или переписать в виде модели авторегрессии неограниченного порядка, и наоборот.
83. Модель авторегрессии и проинтегрированного скользящего среднего
Модель авторегрессии и проинтегрированного скользящего среднего (АРПСС) была предложена американскими учёными Боксом и Дженкинсом в 1976 г. как один из методов оценки неизвестных параметров и прогнозирования временных рядов.
Моделью авторегрессиии проинтегрированного скользящего среднего
называется модель, которая применяется при моделировании нестационарных временных рядов.Нестационарный временной ряд характеризуется непостоянными математическим ожиданием, дисперсией, автоковариацией и автокорреляцией.
В основе модели авторегрессии и проинтегрированного скользящего среднего лежат два процесса:
1) процесс авторегрессии;
2) процесс скользящего среднего.
Процесс авторегрессии может быть представлен в виде:
где a – свободный член модели, являющийся константой;
Каждое наблюдение в модели авторегрессии представляет собой сумму случайной компоненты и линейной комбинации предыдущих наблюдений.
Процесс скользящего среднего может быть представлен в виде:
где
Текущее наблюдение в модели скользящего среднего представляет собой сумму случайной компоненты в данный момент времени и линейной комбинации случайных воздействий в предыдущие моменты времени.
Следовательно, в общем виде модель авторегрессии и проинтегрированного скользящего среднего описывается формулой:
где
εt – некомпенсированный моделью случайный остаток.
В обозначениях Бокса и Дженкинса модель авторегрессии и проинтегрированного скользящего среднего записывается как
Для рядов с периодической сезонной компонентой применяется модель авторегрессии и проинтегрированного скользящего среднего с сезонностью, которая в обозначениях Бокса и Дженкинса записывается как
Моделирование нестационарных временных рядов с помощью модели авторегрессии и проинтегрированного скользящего среднего осуществляется в три этапа:
1) проверка временного ряда на стационарность;
2) идентификация порядка модели и оценивание неизвестных параметров;
3) прогноз.
Применение модели АРПСС предполагает обязательную стационарность исследуемого ряда, поэтому на первом этапе данное предположение проверяется с помощью автокорреляционной и частной автокорреляционной функций ряда остатков. Остатки представляют собой разности наблюдаемого временного ряда и значений, вычисленных с помощью модели.
Устранить нестационарность временного ряда можно с помощью метода разностных операторов.
Разностным оператором первого порядка называется замена исходного уровня временного ряда разностями первого порядка:
Разностные операторы первого порядка позволяет исключить линейные тренды.
Разностные операторы второго порядка позволяют исключить параболические тренды.
Сезонные разностные операторы предназначены для исключения 12-ти или 4-х периодичной сезонности:
Если модель содержит и трендовую, и сезонную компоненты, то необходимо применять оба оператора.
На втором этапе необходимо решить, сколько параметров авторегрессии и скользящего среднего должно войти в модель.